anonymous
  • anonymous
Relationship between electric field and magnetic field?
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Michele_Laino
  • Michele_Laino
Hint: you have to consider the relationship between the electric field and magnetic field of a plane electromagnetic wave.
IrishBoy123
  • IrishBoy123
delve into the Maxwell/ Heaviside equations....
IrishBoy123
  • IrishBoy123
you will be amazed

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Could you explain me @Michele_Laino
Michele_Laino
  • Michele_Laino
the electric and magnetic field of a plane electromagnetic wave can be represented as below: |dw:1438869598405:dw|
Michele_Laino
  • Michele_Laino
the magnetic and electric field can be represented by these vectors: \[\Large \begin{gathered} {\mathbf{E}} = {{\mathbf{E}}_0}{e^{i\left( {{\mathbf{k}} \cdot {\mathbf{r}} - \omega t} \right)}} \hfill \\ \hfill \\ {\mathbf{B}} = {{\mathbf{B}}_0}{e^{i\left( {{\mathbf{k}} \cdot {\mathbf{r}} - \omega t} \right)}} \hfill \\ \end{gathered} \] using the Maxwell equation, we can show this: \[\Large {\mathbf{E}} = \frac{{{\mathbf{k}} \times {\mathbf{B}}}}{\omega }\] being \[\Large {\mathbf{k}}\] the wave vector, whose modulus, is: \[\Large \left| {\mathbf{k}} \right| = \frac{\omega }{c}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.