AngelaB97
  • AngelaB97
please help me simplify this x/y-y/x _________ 1/x^2-1/y^2
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\frac{ \frac{ x }{ y }-\frac{ y }{ x } }{ \frac{ 1 }{ x^2 } -\frac{ 1 }{ y^2 }}\]First separate the equations so it can look more simpler.\[(\frac{ x }{ y }-\frac{ y }{ x })\div (\frac{ 1 }{ x^2 }-\frac{ 1 }{ y^2 })\]
anonymous
  • anonymous
When you flip the second equation, the division sign will change to a multiplication sign.\[(\frac{ x }{ y }-\frac{ y }{ x })\times(x^2-y^2)\]
AngelaB97
  • AngelaB97
yes and then what happens to the denominator?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Look at the first equation now and try to get the denominator's the same by cross multiplying.\[(\frac{ x(x) }{ y(x) }-\frac{ y(y) }{ x(y) })\]
anonymous
  • anonymous
\[(\frac{ x^2 }{ xy }-\frac{ y^2 }{ xy })=(\frac{ x^2-y^2 }{ xy })\]
anonymous
  • anonymous
Now the equation looks like this:\[(\frac{ x^2-y^2 }{ xy })\times(x^2-y^2)\]
anonymous
  • anonymous
The original denominator is made up of 2 different fractions. So they don't have a single reciprocal. Solve these problems by multiplying by 1in the form of the least common denominator divided by itself. The least common denominator of x, y, x², and y² is x²y². |dw:1438814492460:dw|
anonymous
  • anonymous
when you distribute the fractions will clear out
anonymous
  • anonymous
\[\frac{ (x^2-y^2)(x^2-y^2) }{ xy }\]
anonymous
  • anonymous
|dw:1438814584619:dw|
anonymous
  • anonymous
\[\frac{ (x^4-2x^2y^2+y^4) }{ xy }\]
anonymous
  • anonymous
|dw:1438814672337:dw|
anonymous
  • anonymous
|dw:1438814727794:dw|
anonymous
  • anonymous
\[\frac{ \frac{ x }{ y }-\frac{ y }{ x } }{ \frac{ 1 }{ x^2 }-\frac{ 1 }{ y^2 } }\] \[=\frac{ \frac{ x^2-y^2 }{ xy } }{ \frac{ y^2-x^2 }{ x^2y^2 } }\] \[=\frac{ x^2-y^2 }{ xy }\times \frac{ x^2y^2 }{ -\left( x^2-y^2 \right) }\] =-xy

Looking for something else?

Not the answer you are looking for? Search for more explanations.