A community for students.
Here's the question you clicked on:
 0 viewing
anonymous
 one year ago
Calculus, fundamental theorem...
how do you handle this problem?
Image coming ...
anonymous
 one year ago
Calculus, fundamental theorem... how do you handle this problem? Image coming ...

This Question is Closed

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0so would productivity be the first derivative? f'[x] and productivity per worker the function f[x] then acceleration can be gleaned from f''[x] ? guessing ... then t is workers? US[t] = output/t ?

nincompoop
 one year ago
Best ResponseYou've already chosen the best response.0remember that these are just slopes

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0If `us[t]`, for instance, is meant to denote US productivity, chances are `t` indeed refers to workers. This means growth rate is represented by the first derivative, i.e. `us'[t]`, and so the rate at which this changes would be `us''[t]`.

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0Does this look right then? us[t] = U / t ( output per worker) us'[t] = d/dx U * t^(1) = (1) U * t^2 = U/t^2 (rate of change, Growth) us''[t] = d/dx U t^2 = 2U t^3 = 2U / t^3 (acceleration) japan[t] = J / t ( output per worker) japan'[t] = d/dx J * t^(1) = (1) J * t^2 = J/t^2 (rate of change, Growth) japan''[t] = d/dx J t^2 = 2J t^3 = 2J / t^3 (acceleration) germ[t] = G / t ( output per worker) germ'[t] = d/dx G * t^(1) = (1) G * t^2 = J/t^2 (rate of change, Growth) germ''[t] = d/dx G t^2 = 2G t^3 = 2G / t^3 (acceleration)

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0GIVEN U = US Output J = Japanese Output G = Germany Output

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0seems wrong though, t cant have the same population for all countries..

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0I would disagree. `u[t]` represents the production per worker in the same way some function \(f(x)\) represents a function per unit \(x\).

nincompoop
 one year ago
Best ResponseYou've already chosen the best response.0when you're analyzing outputs such as worker, terms such as acceleration is not a good way to describe profits or other economic outputs

nincompoop
 one year ago
Best ResponseYou've already chosen the best response.0here's a good example of calculus that is directly related to economics http://www.columbia.edu/itc/sipa/math/calc_econ_interp_u.html

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0Im not sure that link is making things any clearer for me at this point.. how about some help clarifying what variables are involved, and how they are utilized? Somewhere there has to be a part of these equations that says. (TotalOutput / NumberOfWorkers ) = productivity. Please give me an idea how that might be utilized. This must be different for each country, how is that factored in? and then there is the question of 'what role does time does time play in these equations, and how is that accounted for, is time factored in as t, or is time not part of them at all?'

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0maybe t is worker hours?

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0If I find a way to answer this, I'll post it.. I have to go out for now.

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0Well I will attempt and answer, hopefully someone can confirm or correct. Let J = workers in Japan G = workers in Germany U = workers in USA Then the productivity  output per worker  in terms of production functions are us[t]/U germ[t]/G japan[t]/J In which case us[t],germ[t],japan[t] are the total production for each country during the term. Growth rate is total production / time us[t]/t germ[t]/t japan[t]/t Q. does this mean us'[t] = us[t]/t ? productivity acceleration rate is given by the 2nd derivative. us''[t] germ''[t] japan''[t] Us Growth rate must have slowed and have been seen to be us/t < 0 But both germ''[t] >0 and japan''[t]>0 must be above zero. since both have increased with time. As the author has used 1st and 2nd derivative terms, he must be familiar with calculus.

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0oh and.. us[t]/U > germ[t]/G us[t]/U > japan[t]/J

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0Thanks for any help I got here.. us[t] can't mean production per worker in the same way f[x] is some function per unit of x. t must represent time. It makes more sense. us[t],japan[t],germ[t] must have within them functions that are dependent on a local worker count, and then return the production over a given time interval in terms of productivity per worker. In this way t can have the same meaning no matter what country you are testing against.

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0I think this is the answer GIVEN national productivity as an output per worker over a given term t us[t] germ[t] japan[t] Taking the derivative of these functions with respect to time we get a rate of change, which is the growth. d/dt us[t] = us'[t] d/dt germ[t] = germ'[t] d/dt japan[t] = japan'[t] and their second derivatives of the growth with respect to time will give the acceleration (if positive) or deceleration (if negative) of the growth. d/dt us'[t] = us''[t] d/dt germ'[t] = germ''[t] d/dt japan'[t] = japan''[t] For US productivity to be higher than Japan and Germany then us[t] > germ[t] us[t] > japan[t] For growth rate to slow while productivity has accelerated for the other major countries then us''[t] < 0 meaning the growth is decelerating. But germ''[t] >0 japan''[t]>0 meaning these countries are accelerating. As the author has inferred 1st derivative terms for growth and 2nd derivative terms for acceleration, he must be familiar with calculus.

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0And I hate to be bastard but considering that I paid to get help on this one, that was pretty bad.

Astrophysics
 one year ago
Best ResponseYou've already chosen the best response.1Haha, I think you have the right to say that, still need help, I could try, I just didn't want to read so much xD
Ask your own question
Sign UpFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.