A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

anonymous

  • one year ago

Calculus, fundamental theorem... how do you handle this problem? Image coming ...

  • This Question is Closed
  1. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    1 Attachment
  2. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    so would productivity be the first derivative? f'[x] and productivity per worker the function f[x] then acceleration can be gleaned from f''[x] ? guessing ... then t is workers? US[t] = output/t ?

  3. nincompoop
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    remember that these are just slopes

  4. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    If `us[t]`, for instance, is meant to denote US productivity, chances are `t` indeed refers to workers. This means growth rate is represented by the first derivative, i.e. `us'[t]`, and so the rate at which this changes would be `us''[t]`.

  5. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Does this look right then? us[t] = U / t ( output per worker) us'[t] = d/dx U * t^(-1) = (-1) U * t^-2 = -U/t^2 (rate of change, Growth) us''[t] = d/dx -U t^-2 = 2U t^-3 = 2U / t^3 (acceleration) japan[t] = J / t ( output per worker) japan'[t] = d/dx J * t^(-1) = (-1) J * t^-2 = -J/t^2 (rate of change, Growth) japan''[t] = d/dx -J t^-2 = 2J t^-3 = 2J / t^3 (acceleration) germ[t] = G / t ( output per worker) germ'[t] = d/dx G * t^(-1) = (-1) G * t^-2 = -J/t^2 (rate of change, Growth) germ''[t] = d/dx -G t^-2 = 2G t^-3 = 2G / t^3 (acceleration)

  6. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    GIVEN U = US Output J = Japanese Output G = Germany Output

  7. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    seems wrong though, t cant have the same population for all countries..

  8. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    I would disagree. `u[t]` represents the production per worker in the same way some function \(f(x)\) represents a function per unit \(x\).

  9. nincompoop
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    when you're analyzing outputs such as worker, terms such as acceleration is not a good way to describe profits or other economic outputs

  10. nincompoop
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    here's a good example of calculus that is directly related to economics http://www.columbia.edu/itc/sipa/math/calc_econ_interp_u.html

  11. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Im not sure that link is making things any clearer for me at this point.. how about some help clarifying what variables are involved, and how they are utilized? Somewhere there has to be a part of these equations that says. (TotalOutput / NumberOfWorkers ) = productivity. Please give me an idea how that might be utilized. This must be different for each country, how is that factored in? and then there is the question of 'what role does time does time play in these equations, and how is that accounted for, is time factored in as t, or is time not part of them at all?'

  12. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    maybe t is worker hours?

  13. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    If I find a way to answer this, I'll post it.. I have to go out for now.

  14. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Well I will attempt and answer, hopefully someone can confirm or correct. Let J = workers in Japan G = workers in Germany U = workers in USA Then the productivity - output per worker - in terms of production functions are us[t]/U germ[t]/G japan[t]/J In which case us[t],germ[t],japan[t] are the total production for each country during the term. Growth rate is total production / time us[t]/t germ[t]/t japan[t]/t Q. does this mean us'[t] = us[t]/t ? productivity acceleration rate is given by the 2nd derivative. us''[t] germ''[t] japan''[t] Us Growth rate must have slowed and have been seen to be us/t < 0 But both germ''[t] >0 and japan''[t]>0 must be above zero. since both have increased with time. As the author has used 1st and 2nd derivative terms, he must be familiar with calculus.

  15. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    oh and.. us[t]/U > germ[t]/G us[t]/U > japan[t]/J

  16. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Thanks for any help I got here.. us[t] can't mean production per worker in the same way f[x] is some function per unit of x. t must represent time. It makes more sense. us[t],japan[t],germ[t] must have within them functions that are dependent on a local worker count, and then return the production over a given time interval in terms of productivity per worker. In this way t can have the same meaning no matter what country you are testing against.

  17. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    I think this is the answer GIVEN national productivity as an output per worker over a given term t us[t] germ[t] japan[t] Taking the derivative of these functions with respect to time we get a rate of change, which is the growth. d/dt us[t] = us'[t] d/dt germ[t] = germ'[t] d/dt japan[t] = japan'[t] and their second derivatives of the growth with respect to time will give the acceleration (if positive) or deceleration (if negative) of the growth. d/dt us'[t] = us''[t] d/dt germ'[t] = germ''[t] d/dt japan'[t] = japan''[t] For US productivity to be higher than Japan and Germany then us[t] > germ[t] us[t] > japan[t] For growth rate to slow while productivity has accelerated for the other major countries then us''[t] < 0 meaning the growth is decelerating. But germ''[t] >0 japan''[t]>0 meaning these countries are accelerating. As the author has inferred 1st derivative terms for growth and 2nd derivative terms for acceleration, he must be familiar with calculus.

  18. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    And I hate to be bastard but considering that I paid to get help on this one, that was pretty bad.

  19. Astrophysics
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 1

    Haha, I think you have the right to say that, still need help, I could try, I just didn't want to read so much xD

  20. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.