anonymous
  • anonymous
the series ((10^n)/((n+1)6^(2n+1)) what does L = in the ratio test and does it converge or diverge by the test
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
your help is greatly appreciated
IrishBoy123
  • IrishBoy123
lmLtfy \(\huge \frac{10^n}{(n+1)6^{(2n+1)}} \) is that it?
anonymous
  • anonymous
yes

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
are u able to help, i really need it
IrishBoy123
  • IrishBoy123
so in ratio test we compare successive terms, right?
anonymous
  • anonymous
yes i for come reason could get a value for L and then can't tell if it diverges or converges
anonymous
  • anonymous
can u help me find L
anonymous
  • anonymous
i know it converges but can't find the value, would love help! to find L
IrishBoy123
  • IrishBoy123
haven't tried this in ages so here goes: \( \huge \frac{\frac{10^{n+1}}{(n+2)6^{(2n+3)}}}{\frac{10^n}{(n+1)6^{(2n+1)}}} \) \( \huge = \frac{\frac{10^{n}10^{1}}{(n+2)6^{2n}6^{3}}}{\frac{10^n}{(n+1)6^{2n}6^{1}}} \) \( \huge = \frac{\frac{10}{(n+2)6^{3}}}{\frac{1}{(n+1)6^{1}}} \) \( \huge = \frac{10}{(n+2)6^{3}} \times \frac{(n+1)6}{1} = \frac{10}{6^2}\frac {n+1}{n+2}\)
anonymous
  • anonymous
does that mean L =10/36???
anonymous
  • anonymous
can someone explain what L is?
anonymous
  • anonymous
tangential but here is its closed form: $$S=\sum_{n=0}^\infty\frac{10^n}{(n+1)6^{2n+1}}=\frac16\sum_{n=0}^\infty\frac1{n+1}\left(\frac{10}{36}\right)^n=\frac35\sum_{n=0}^\infty\frac1{n+1}\left(\frac5{18}\right)^{n+1}$$ now consider $$\frac1{1-x}=\sum_{n=0}^\infty x^n\\\implies \log(1-x)=\sum_{n=0}^\infty \frac1{n+1}x^{n+1}$$ so we have that $$S=\frac35\log\left(1-\frac5{18}\right)=\frac35\log\left(\frac{13}{18}\right)=\frac35\left(\log13-\log18\right)$$
anonymous
  • anonymous
or i guess that's actually \(\log(1-x)=-\sum_{n=0}^\infty\frac1{n+1}x^{n+1}\) so we actually have that $$S=-\frac35\log\left(1-\frac5{18}\right)=\frac35\log\left(\frac{18}{13}\right)=\frac35(\log18-\log13)$$
anonymous
  • anonymous
so L=3/4(log18-log13) can anyone verify this is correct? thanks again or your help, as i need help finding the correct L value
anonymous
  • anonymous
no, that's not \(L\) -- that's the actual value of the series
anonymous
  • anonymous
for \(L\) follow what @IrishBoy123 says
anonymous
  • anonymous
you get $$L=\lim_{n\to\infty}\frac{10}{36}\cdot\frac{n+1}{n+2}=\frac5{18}\lim_{n\to\infty}\frac{1+1/n}{1+2/n}=\frac5{18}<1$$
anonymous
  • anonymous
oh so 5/18 is L then?
IrishBoy123
  • IrishBoy123
@nick1234567 L is 10 / 36 i think you saw that
anonymous
  • anonymous
yep, \(L=5/18=10/36\)
anonymous
  • anonymous
thank U!!!!
anonymous
  • anonymous
but the series itself sums to \(\frac35(\log2+2\log3-\log13)\approx0.195253\)
thomas5267
  • thomas5267
\[ \begin{align*} f(n)&=\frac{10^n}{(n+1)6^{2n+1}}\\ &=\frac{10^n}{{6(n+1)36^n}}\\ &=\frac{1}{6(n+1)} \left( \frac{5}{18} \right)^{n}\\ \end{align*} \] \[ \begin{align*} \lim_{n\to\infty}\left|\frac{f(n+1)}{f(n)}\right|&=\lim_{n\to\infty}\left|\frac{1}{6(n+2)} \left( \frac{5}{18} \right)^{n+1}6(n+1)\left(\frac{18}{5}\right)^n\right|\\ &=\lim_{n\to\infty}\left|\frac{n+1}{n+2}\frac{5}{18}\right|\\ &=\frac{5}{18} \end{align*} \] My math is definitely rusty.

Looking for something else?

Not the answer you are looking for? Search for more explanations.