amoodarya
  • amoodarya
The way to answer this limit
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amoodarya
  • amoodarya
\[\lim_{x\to 0} \sin(x)^{\cos(x)}\left(\frac{\cos^2(x)}{\sin(x)} - \sin(x)\log(\sin(x))\right)\]
anonymous
  • anonymous
try direct substitution
anonymous
  • anonymous
i think every thing will be 0

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
the answer =0
amoodarya
  • amoodarya
answer is +1
amoodarya
  • amoodarya
I can do that in very long terms ... but I looking for a good idea !
anonymous
  • anonymous
ok but it is not undefined by direct substitution but 0
freckles
  • freckles
maybe we can use this... \[u=\sin(x)^{\cos(x)} \\ \frac{u'}{u}=\frac{\cos^2(x)}{\sin(x)}-\sin(x) \ln(\sin(x))\]
ganeshie8
  • ganeshie8
then we simply need to find \(\lim\limits_{x\to 0}~~u' \) is it http://www.wolframalpha.com/input/?i=lim+%28x%5Cto+0%29+%28%28sin%28x%29%29%5E%28cos%28x%29%29%29%27
freckles
  • freckles
i was thinking about trying to somehow use l'hosptial backwards if you know what I mean
freckles
  • freckles
\[\lim_{x \rightarrow 0} \frac{u'}{1}=\lim_{x \rightarrow 0} \frac{u}{x}\]
freckles
  • freckles
we need to show this \[\lim_{x \rightarrow 0}\frac{1}{x} \sin(x)^{\cos(x)}=1\]
freckles
  • freckles
oops u does goes to 0
amoodarya
  • amoodarya
\[\lim sinx^{\cos x} \rightarrow 0 (x \to 0)\]
thomas5267
  • thomas5267
\[ \begin{align*} L&=\lim_{x\to 0} \sin(x)^{\cos(x)}\left(\frac{\cos^2(x)}{\sin(x)} - \sin(x)\log(\sin(x))\right)\\&=\lim_{x\to 0} \cos^2(x)\sin(x)^{\cos(x)-1} - \lim_{x\to 0} \sin(x)^{\cos(x)+1}\log(\sin(x))\\ \end{align*} \] By Mathematica, both limits exists. No idea how to evaluate though.
thomas5267
  • thomas5267
The first one is 1 and the second one is 0.
thomas5267
  • thomas5267
In fact, \[ \lim_{x\to 0}\sin(x)^{\cos(x)-1}=1 \]
freckles
  • freckles
\[\lim_{x \rightarrow 0}\frac{1}{x} \sin(x)^{\cos(x)}\] hmmm near x we have sin(x) is approximately x I don't know if we can do this...\[\lim_{x \rightarrow 0}\frac{1}{x} \sin(x)^{\cos(x)} =\lim_{x \rightarrow 0}\frac{1}{x} x ^{\cos(x)} =\lim_{x \rightarrow 0}x^{\cos(x)-1}\]
freckles
  • freckles
near x=0*
thomas5267
  • thomas5267
Squeeze theorem using x and -x?
freckles
  • freckles
\[v=x^{\cos(x)-1} \\ \ln(v)=(\cos(x)-1) \ln(x) \\ \lim_{x \rightarrow 0} (\cos(x)-1)\ln(x)=\lim_{x \rightarrow 0}\frac{\ln(x)}{\frac{1}{\cos(x)-1}} \\ =\lim_{x \rightarrow 0}\frac{\frac{1}{x}}{\frac{-\sin(x)}{(\cos(x)-1)^2}} =\lim_{x \rightarrow 0}\frac{-1(\cos(x)-1)^2}{x \sin(x)} \\ = \lim_{x \rightarrow 0} \frac{-1 (\frac{\cos(x)-1}{x})^2}{\frac{x}{x} \frac{\sin(x)}{x}}\]
freckles
  • freckles
\[=\frac{-1(0)^2}{1(1)}=0\]
freckles
  • freckles
\[e^{\ln(v)}->e^{0}=1\]
freckles
  • freckles
so v->1
amoodarya
  • amoodarya
thank U all . I get it
thomas5267
  • thomas5267
The problem is that \[ \lim_{x\to 0}\sin(x)^{\cos(x)-1} \quad\text{ does not exist on }\mathbb{R}\\ \lim_{x\to 0^+}\sin(x)^{\cos(x)-1}=1 \]
thomas5267
  • thomas5267
I don't think the left hand limit exists on real number.
freckles
  • freckles
thomas I see what you mean we need x>0 for ln(x) to exist also I think this approach might be better than my earlier if it is allowed \[\sin(x)\approx x \text{ for } x \approx 0 \\ \cos(x) \approx 1 \text{ for } x \approx 0 \\ \sin(x)^{\cos(x)}(\frac{\cos^2(x)}{\sin(x)}-\sin(x)\ln(\sin(x))) \approx x^{1}(\frac{1^2}{x}-x \ln(x)) \\ \lim_{x \rightarrow 0^+} x(\frac{1}{x}-x \ln(x)) \\ \\ =\lim_{x \rightarrow 0^+}(1-x^2 \ln(x))\]
freckles
  • freckles
like we can use l'hospital on that second term to show it goes to 0
freckles
  • freckles
then we have 1-0 which is 1
thomas5267
  • thomas5267
I mean \[ \sin(x)^{\cos(x)}\left(\frac{\cos^2(x)}{\sin(x)} - \sin(x)\log(\sin(x))\right) \; \text{does not exist for } x\leq 0 \]
freckles
  • freckles
right
thomas5267
  • thomas5267
So there is no left hand limit and no limit. At least not on real numbers.
freckles
  • freckles
but we can we find the right hand limit
freckles
  • freckles
I changed those little thingys above to + signs to denote I was looking at the right hand limit

Looking for something else?

Not the answer you are looking for? Search for more explanations.