expand log8(5v^2)(r^3 )

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

expand log8(5v^2)(r^3 )

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\huge\rm log_8(5v^2)(r^3)\] familiar with log property ?
i have no idea what I'm supposed to do
quotient rule\[\huge\rm log_b y - \log_b x = \log_b \frac{ x }{ y}\] to condense you can change subtraction to division product rule \[\huge\rm log_b x + \log_b y = \log_b( x \times y )\] addition ----> multiplication power rule \[\huge\rm log_b x^y = y \log_b x\] you just need to know these properties of log that's it!

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

so would the answer be 5log8+2logv+3logr ?
base would be the same for all log
and 5 isn't an exponent.
log8+2log8+3log8, but where would the 5,r, and v go?
8 is base it would be like this \[\log_8\]
would it be 2log8(5v)+3log8(r) assuming the 8s were bases
sorry the internet connection was disconnected

Not the answer you are looking for?

Search for more explanations.

Ask your own question