AaronAndyson
  • AaronAndyson
sec^2(A) + cosec^2(A) = sec^2(A).cosec^2(A) @michele_liano
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
AaronAndyson
  • AaronAndyson
@Michele_Laino
Michele_Laino
  • Michele_Laino
we have to apply these identities: \[\sec A = \frac{1}{{\cos A}},\quad \csc A = \frac{1}{{\sin A}}\]
AaronAndyson
  • AaronAndyson
?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

imqwerty
  • imqwerty
have u tried to solve the expression?? try converting the terms into sin nd cos form nd then take the LCM nd solve
Michele_Laino
  • Michele_Laino
left side becomes: \[\sec A + {\left( {\csc A} \right)^2} = \frac{1}{{\cos A}} + {\left( {\frac{1}{{\sin A}}} \right)^2} = ...\] please continue
AaronAndyson
  • AaronAndyson
i'm confused
Michele_Laino
  • Michele_Laino
I think that there is a typo into your original expression, please check
AaronAndyson
  • AaronAndyson
fixed
Michele_Laino
  • Michele_Laino
ok! so left side becomes: \[{\left( {\sec A} \right)^2} + {\left( {\csc A} \right)^2} = {\left( {\frac{1}{{\cos A}}} \right)^2} + {\left( {\frac{1}{{\sin A}}} \right)^2} = ...\]
imqwerty
  • imqwerty
ok m calling sinA = x nd cosA=y 1/y^2 +1/x^2 take LCM we get - (x^2 + y^2)/(xy)^2 we know that sin^2A+cos^2A = 1 therefore the numerator = 1 nd we r left with 1/(xy)^2 =sec^A cosec^A
AaronAndyson
  • AaronAndyson
sin^2(A)+cos^2(A)/cos(A)sin(A) = RHS
imqwerty
  • imqwerty
yes
AaronAndyson
  • AaronAndyson
1/sin(A)cos(A) = sec(A)cosec(A) = RHS
Michele_Laino
  • Michele_Laino
more precisely, it is: sin^2(A)+cos^2(A)/cos(A)^2 sin(A)^2 = RHS
AaronAndyson
  • AaronAndyson
ok!thanks...
AaronAndyson
  • AaronAndyson
i nedd more help *need

Looking for something else?

Not the answer you are looking for? Search for more explanations.