(1+tan^2(A) times cot(A )all over cosec^2(A) = tan(A)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

(1+tan^2(A) times cot(A )all over cosec^2(A) = tan(A)

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

here, a possible way, is to replace tanA with sinA/cosA, and cosecA with 1/sinA, in so doing the left side becomes: \[\Large \begin{gathered} \frac{{{{\left( {1 + \tan A} \right)}^2}\cot A}}{{{{\left( {\csc A} \right)}^2}}} = \hfill \\ \hfill \\ = \frac{{{{\left( {1 + \frac{{\sin A}}{{\cos A}}} \right)}^2}\frac{{\cos A}}{{\sin A}}}}{{{{\left( {\frac{1}{{\sin A}}} \right)}^2}}} = ... \hfill \\ \end{gathered} \]
The question is \[(1 + \tan^2(A).\cot(A) \over cosec^2(A) \] is equal to tan(A)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yes! it is an identity, so we have to show that the left side is equal to the right side
so sec^2(A).cot(A) over cosec^2(A)
sorry I have made an error, here are your right steps: \[\Large \begin{gathered} \frac{{\left( {1 + {{\left( {\tan A} \right)}^2}} \right)\cot A}}{{{{\left( {\csc A} \right)}^2}}} = \hfill \\ \hfill \\ = \frac{{\left( {1 + {{\left( {\frac{{\sin A}}{{\cos A}}} \right)}^2}} \right)\frac{{\cos A}}{{\sin A}}}}{{{{\left( {\frac{1}{{\sin A}}} \right)}^2}}} = ... \hfill \\ \end{gathered} \]
sec^2(A)
hint: here are more steps: \[\Large \begin{gathered} \frac{{\left( {1 + {{\left( {\tan A} \right)}^2}} \right)\cot A}}{{{{\left( {\csc A} \right)}^2}}} = \hfill \\ \hfill \\ = \frac{{\left( {1 + {{\left( {\frac{{\sin A}}{{\cos A}}} \right)}^2}} \right)\frac{{\cos A}}{{\sin A}}}}{{{{\left( {\frac{1}{{\sin A}}} \right)}^2}}} = \hfill \\ \hfill \\ = \frac{{{{\left( {\sin A} \right)}^2} + {{\left( {\cos A} \right)}^2}}}{{{{\left( {\cos A} \right)}^2}}} \cdot \frac{{\cos A}}{{\sin A}} \cdot {\left( {\sin A} \right)^2} = ... \hfill \\ \end{gathered} \]
didn't get the last step
we have the last step because we can write this: \[\Large \left( {1 + {{\left( {\frac{{\sin A}}{{\cos A}}} \right)}^2}} \right) = \frac{{{{\left( {\sin A} \right)}^2} + {{\left( {\cos A} \right)}^2}}}{{{{\left( {\cos A} \right)}^2}}}\]
furthermore, we can write this: \[\Large \frac{1}{{{{\left( {\frac{1}{{\sin A}}} \right)}^2}}} = \frac{1}{{\frac{1}{{{{\left( {\sin A} \right)}^2}}}}} = {\left( {\sin A} \right)^2}\]
1/cos^2(A) . cos(A)/sin(A) . (sin^2(A))
yes!
now continue to simplify
confused ;-;
\[\Large |dw:1438936725328:dw|\frac{1}{{{{\left( {\cos A} \right)}^2}}} \cdot \frac{{\cos A}}{{\sin A}} \cdot {\left( {\sin A} \right)^2} = \frac{{\sin A}}{{\cos A}}\]
\[\Large \frac{1}{{{{\left( {\cos A} \right)}^2}}} \cdot \frac{{\cos A}}{{\sin A}} \cdot {\left( {\sin A} \right)^2} = \frac{{\sin A}}{{\cos A}}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question