HelloKitty17
  • HelloKitty17
FAN AND MEDAL HERE!!!!!!!!!!!!!!!!!!!!!
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
HelloKitty17
  • HelloKitty17
The following graph describes function 1, and the equation below it describes function 2: Function 1 graph of function f of x equals negative x squared plus 8 multiplied by x minus 15 Function 2 f(x) = -x2 + 4x + 1 Function ____ has the larger maximum. (Put 1 or 2 in the blank space) Numerical Answers Expected!
HelloKitty17
  • HelloKitty17
@FlamePlaysMC @bubbleslove1234 @heretohelpalways @Hero @mathway
HelloKitty17
  • HelloKitty17
@hybrik

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

OregonDuck
  • OregonDuck
1st function equation: -x^2 + 8(x-15) simplify: -x^2 +8x-120 2nd equation: -x^2 + 4x+1 Taking derivative will find the highest point of the parabola, since the slope of the parabola at its maximum is 0, and the derivative will allow us to find that. derivative of 1st fuction= -2x + 8 solve for 0 : -2x+8= 0 x= -4 2nd fucntion der. -2x+4 = 0 x= 2 Now that you have those max points, plug them back in and compare which one has the highest maximum of y. so second funcition

Looking for something else?

Not the answer you are looking for? Search for more explanations.