Please help me I will give you metals

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Please help me I will give you metals

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

were you able to find dy/dx ?
yes, I have the prime derivative I got -3x/y
correct \[\Large \frac{dy}{dx} = \frac{-3x}{y}\]
Now apply the derivative to both sides \[\Large \frac{dy}{dx} = \frac{-3x}{y}\] \[\Large \frac{d}{dx}\left[\frac{dy}{dx}\right] = \frac{d}{dx}\left[\frac{-3x}{y}\right]\] \[\Large \frac{d^2y}{dx^2} = ??\]
and then for the y'' i got -3y-y'(-3x) --------- 4y^2
and then I plug -3x/y on the y' right?
correct and simplify
-3y+(9x/y) ---------- 4y^2
I'm not getting the same thing
@jim_thompson5910 , from this pint do I just plug the values of x and Y?
what did you get?
|dw:1438995573413:dw|
\[\Large \frac{d^2y}{dx^2} = \frac{-3y-(-3x)\frac{dy}{dx}}{y^2}\] \[\Large \frac{d^2y}{dx^2} = \frac{-3y+3x\left(\frac{-3x}{y}\right)}{y^2}\] \[\Large \frac{d^2y}{dx^2} = \frac{-3y-\frac{9x^2}{y}}{y^2}\] \[\Large \frac{d^2y}{dx^2} = \frac{-3y{\color{red}{*y}}-\frac{9x^2}{y}{\color{red}{*y}}}{y^2{\color{red}{*y}}}\] \[\Large \frac{d^2y}{dx^2} = \frac{-3y{\color{red}{*y}}-\frac{9x^2}{\cancel{y}}{\color{red}{*\cancel{y}}}}{y^2{\color{red}{*y}}}\] \[\Large \frac{d^2y}{dx^2} = \frac{-3y^2-9x^2}{y^3}\]
oh I see you simplified it, and from here. Do I plug the x and y values into this derivate?
yeah
-2.625?
yeah, -21/8 = -2.625
okay, if they say that I need to put my answer into 2 decimal places, do i put -2.63?
yes
okay, thank you so much
no problem

Not the answer you are looking for?

Search for more explanations.

Ask your own question