anonymous
  • anonymous
Please help me I will give you metals
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@phi
anonymous
  • anonymous
anonymous
  • anonymous
@dan815

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
@robtony
jim_thompson5910
  • jim_thompson5910
were you able to find dy/dx ?
anonymous
  • anonymous
yes, I have the prime derivative I got -3x/y
jim_thompson5910
  • jim_thompson5910
correct \[\Large \frac{dy}{dx} = \frac{-3x}{y}\]
jim_thompson5910
  • jim_thompson5910
Now apply the derivative to both sides \[\Large \frac{dy}{dx} = \frac{-3x}{y}\] \[\Large \frac{d}{dx}\left[\frac{dy}{dx}\right] = \frac{d}{dx}\left[\frac{-3x}{y}\right]\] \[\Large \frac{d^2y}{dx^2} = ??\]
anonymous
  • anonymous
and then for the y'' i got -3y-y'(-3x) --------- 4y^2
anonymous
  • anonymous
and then I plug -3x/y on the y' right?
jim_thompson5910
  • jim_thompson5910
correct and simplify
anonymous
  • anonymous
-3y+(9x/y) ---------- 4y^2
jim_thompson5910
  • jim_thompson5910
I'm not getting the same thing
anonymous
  • anonymous
@jim_thompson5910 , from this pint do I just plug the values of x and Y?
anonymous
  • anonymous
what did you get?
anonymous
  • anonymous
|dw:1438995573413:dw|
jim_thompson5910
  • jim_thompson5910
\[\Large \frac{d^2y}{dx^2} = \frac{-3y-(-3x)\frac{dy}{dx}}{y^2}\] \[\Large \frac{d^2y}{dx^2} = \frac{-3y+3x\left(\frac{-3x}{y}\right)}{y^2}\] \[\Large \frac{d^2y}{dx^2} = \frac{-3y-\frac{9x^2}{y}}{y^2}\] \[\Large \frac{d^2y}{dx^2} = \frac{-3y{\color{red}{*y}}-\frac{9x^2}{y}{\color{red}{*y}}}{y^2{\color{red}{*y}}}\] \[\Large \frac{d^2y}{dx^2} = \frac{-3y{\color{red}{*y}}-\frac{9x^2}{\cancel{y}}{\color{red}{*\cancel{y}}}}{y^2{\color{red}{*y}}}\] \[\Large \frac{d^2y}{dx^2} = \frac{-3y^2-9x^2}{y^3}\]
anonymous
  • anonymous
oh I see you simplified it, and from here. Do I plug the x and y values into this derivate?
jim_thompson5910
  • jim_thompson5910
yeah
anonymous
  • anonymous
-2.625?
jim_thompson5910
  • jim_thompson5910
yeah, -21/8 = -2.625
anonymous
  • anonymous
okay, if they say that I need to put my answer into 2 decimal places, do i put -2.63?
jim_thompson5910
  • jim_thompson5910
yes
anonymous
  • anonymous
okay, thank you so much
jim_thompson5910
  • jim_thompson5910
no problem

Looking for something else?

Not the answer you are looking for? Search for more explanations.