anonymous
  • anonymous
Derive the equation of the parabola with a focus at (−5, 5) and a directrix of y = −1
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@Michele_Laino @taramgrant0543664 @UsukiDoll
ExoticInspirit
  • ExoticInspirit
first What is the equation for a parabola
anonymous
  • anonymous
no idea

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
To find a quadratic equation from a parabola using distances, use the combined distance formula. \[\sqrt{(y_2-y_1)^2+(x_2-x_1)^2}=\sqrt{(y_2-y_1)^2}\] Plug in the focus on the left side of the equation. Plug in the directrix on the right side.
triciaal
  • triciaal
|dw:1439011663445:dw|
triciaal
  • triciaal
the focus is the point central to all points on the parabola. the directrix is perpendicular to the line from the focus to the vertex through the point same distance as focus to the vertex

Looking for something else?

Not the answer you are looking for? Search for more explanations.