anonymous
  • anonymous
A population grows exponentially according to the differential equation dP/dt = kP, where P is the population, t is time, and k is a positive constant. If P(0) = A, what is the time for the population to triple its initial value?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
triciaal
  • triciaal
@hartnn
hartnn
  • hartnn
dP/dt = kP This can be solved by variable separation method. (1/P) dP = k dt and Integrate both sides. We will have a constant of Integration, say C, that can be found using the initial Condition, P(0) = A which means plug in t=0, P =A, to get the value of C. Lastly, we need when the population triples its initial value, so we need when P becomes 3A. Just plug in P=3A to get 't' which will be your answer :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.