caishaax3
  • caishaax3
Multiply x^1/3 times x^3/7 .
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
caishaax3
  • caishaax3
do i need a common denominator?
caishaax3
  • caishaax3
or do i just multiply them
anonymous
  • anonymous
\[\frac{ x^1 }{ 3 } \times \frac{ x^3 }{ 7 }\] you just multiply it.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

jim_thompson5910
  • jim_thompson5910
Use this rule \[\LARGE x^{a} * x^{b} = x^{a+b}\] to get \[\LARGE x^{1/3} * x^{3/7} = x^{1/3+3/7} = ??\]
jim_thompson5910
  • jim_thompson5910
to add 1/3 to 3/7, yes you will need a common denominator
caishaax3
  • caishaax3
so it ends up x^3/21
caishaax3
  • caishaax3
if i just multiply it
anonymous
  • anonymous
\[x ^{a}\times x ^{b}=x ^{a+b}\]
anonymous
  • anonymous
a=1 b=3
anonymous
  • anonymous
try again
caishaax3
  • caishaax3
x^1 times x^3 = x^4?
anonymous
  • anonymous
yes
caishaax3
  • caishaax3
now what ? @Shalante
anonymous
  • anonymous
You thought the answer was x^3/21 earlier but it is x^4/21 The denominator you multiplied was correct, but your numerator was not. Now both are correct.
UnkleRhaukus
  • UnkleRhaukus
\[ x^{1/3}\times x^{3/7}=x^{1/3+3/7}=x^{7/21+9/21}=x^{(7+9)/21}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.