anonymous
  • anonymous
Precalculus question: Determine two pairs of polar coordinates for the point (2, -2) with 0° ≤ θ < 360°. WILL MEDAL
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
triciaal
  • triciaal
|dw:1439090016277:dw|
triciaal
  • triciaal
hope something helped
triciaal
  • triciaal
@jim_thompson5910 @UsukiDoll what am I missing?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

UsukiDoll
  • UsukiDoll
I've seen similar questions like these online (2,-2) means that we are at the fourth quadrant and only cosine is positive. (x,y) ->(2,-2) is the rectangular coordinate so we need to switch to polar coordinates \[x^2+y^2=r^2 \] \[(2)^2+(-2)^2=r^2 \] \[4+4=r^2 \] \[8=r^2 \] \[2 \sqrt{2}, -2 \sqrt{2}=r \] the value of tangent is indeed negative in the second and fourth quadrants.
UsukiDoll
  • UsukiDoll
OH GAWD y'all scared me *faints*
UsukiDoll
  • UsukiDoll
anyway \[\tan(\theta) = -1 \] is negative 45 degrees. so counter clockwise.
triciaal
  • triciaal
@UsukiDoll thanks I have all that what am I missing (except r = -2sqrt2)
UsukiDoll
  • UsukiDoll
polar coordinates \[(r, \theta) \] since \[r = 2 \sqrt{2} , -2 \sqrt{2} \] \[(2 \sqrt{2} , \theta) \], \[(-2 \sqrt{2}, \theta) \] now to find theta....
UsukiDoll
  • UsukiDoll
hmmmmm... if we have negative 45 degrees... maybe 360 - 45 = 315 degrees for the fourth quadrant and 180-45 = 135 degrees for the second quadrant. I might be a bit off on this one since it has been a while.
UsukiDoll
  • UsukiDoll
oh wait... maybe.. |dw:1439093531632:dw|
UsukiDoll
  • UsukiDoll
|dw:1439093615408:dw| a bit sketchy on this part though.
UsukiDoll
  • UsukiDoll
uh oh... I missed something no wonder XD \[x=rcos(\theta) \] if \[r = 2\sqrt{2}\] \[2=2\sqrt{2}cos(\theta) \] \[\frac{1}{\sqrt{2}}=cos(\theta) \] that's 45 degrees \[y=rsin(\theta) \] if \[r = 2\sqrt{2}\] \[-2=2\sqrt{2}sin(\theta) \] \[-\frac{1}{\sqrt{2}}=sin(\theta) \] that's negative 45 degrees
UsukiDoll
  • UsukiDoll
If \[r = -2\sqrt{2}\] and (2,-2) \[x = r \cos(\theta)\] \[2 = -2\sqrt{2} \cos(\theta)\] \[-\frac{1}{\sqrt{2}} = \cos(\theta)\] that's negative 45 degrees \[-2 = -2\sqrt{2} \sin(\theta)\] \[\frac{1}{\sqrt{2}} = \sin(\theta)\] that's 45 degrees
triciaal
  • triciaal
@UsukiDoll thanks for coming and agreeing @Jim_thompson5910 thanks for coming @jdoherty solution 2rt2, 135 2rt2, 315 the angle was -45 degrees

Looking for something else?

Not the answer you are looking for? Search for more explanations.