anonymous
  • anonymous
Please help me finish this pre-calculus question!! Find the angle between the given vectors to the nearest tenth of a degree. u = <2, -4>, v = <3, -8> This is how far I got: cos(theta)= u * v/ IIuII IIvII cos(theta)= <2, -4> * <3, -8>/ II<2, -4>II II<3, -8>II cos(theta)= (2)(-4) + (3)(-8)/ sqrt((2)^2 + (-4)^2)) sqrt((3)^2 + (-8)^2)) cos(theta)= -8+24/sqrt(20) sqrt(73) cos(theta)= 16/ sqrt(20) sqrt(73) cos(theta)= 16/2*sqrt(365) cos(theta)= 8/sqrt(365) I dont know how to get a degree value from this? Please help!
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\tan^{-1} (\frac{ y_2-y_1 }{ x_2-x_1 }\]
anonymous
  • anonymous
I use tan^-1= y2-y1/x2-x1 to find a degree value for cos(theta)= 8/sqrt(365)? Isnt that the slope formula? @saseal
anonymous
  • anonymous
|dw:1439085666228:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
imagine it this way
anonymous
  • anonymous
Okay. @saseal
anonymous
  • anonymous
y2-y1 / x2-x1 gives you the Opposite/Adjacent
anonymous
  • anonymous
-8-(-4)/(3-2) = -4/1 =-4 Okay @saseal
jim_thompson5910
  • jim_thompson5910
you made a mistake here `cos(theta)= (2)(-4) + (3)(-8)/ sqrt((2)^2 + (-4)^2)) sqrt((3)^2 + (-8)^2))` the numerator should be (2)*(3) + (-4)*(-8)
anonymous
  • anonymous
tan^-1 (-4) for the angle
anonymous
  • anonymous
Thank you for catching that @jim_thompson5910 . Is my denominator correct though?
jim_thompson5910
  • jim_thompson5910
yes it is
anonymous
  • anonymous
Okay, so if I simplify it further, my end result should be cos(theta)=19/sqrt(365). But I am stuck here because the question is asking for the angle between the given vectors. Im not sure what to do next to get that angle. @jim_thompson5910
jim_thompson5910
  • jim_thompson5910
you apply the arccos function to both sides
anonymous
  • anonymous
So would it be theta= arccos(19/(sqrt(365))? Would I just have to solve for that? @jim_thompson5910
jim_thompson5910
  • jim_thompson5910
now evaluate arccos(19/sqrt(365)) with a calculator
jim_thompson5910
  • jim_thompson5910
some calculators use \(\Large \cos^{-1}\) in place of arccos
anonymous
  • anonymous
I got 6.009 degrees, or 6 degrees if I round it to the nearest tenth. Thats one of my answer choices @jim_thompson5910
jim_thompson5910
  • jim_thompson5910
correct
anonymous
  • anonymous
Thank you so much for taking the time to help me with this question, its been nagging at me for quite a while now! Thanks a lot @jim_thompson5910
jim_thompson5910
  • jim_thompson5910
you're welcome
anonymous
  • anonymous
\[u=2 i-4j\] \[v=3i-8j\] \[u.v=\left( 2i-4j \right)\left( 3i-8j \right)=\left( 2 \right)\left( 3 \right)+\left( -4 \right)\left( -8 \right)\] =6+32=38 \[\left| u \right|=\sqrt{\left( 2 \right)^2+\left( -4 \right)^2}=\sqrt{20}=2\sqrt{5}\] \[\left| v \right|=\sqrt{\left( 3 \right)^2+\left( -8 \right)^2}=\sqrt{73}\] \[u.v=\left| u \right|\left| v \right|\cos \theta,~where ~\theta~is~the~\angle~\between~u~and~v\] \[38=2\sqrt{5}\sqrt{73}\cos \theta \] \[\cos \theta=\frac{ 19 }{ \sqrt{5}\sqrt{73} }\] \[\theta=\cos^{-1} \left( \frac{ 19 }{ \sqrt{365} } \right)\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.