anonymous
  • anonymous
Determine if the Mean Value Theorem for Integrals applies to the function f(x) = x3 − 9x on the interval [−1, 1]. If so, find the x-coordinates of the point(s) guaranteed to exist by the theorem.
Mathematics
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Basically the average function value has to be equal to the value of the function at some point on the interval. \[\frac{ 1 }{ b-a } \int\limits_{a}^{b}f(x)dx=f(c)\] \[\frac{ 1 }{ 1-(-1) } \int\limits_{-1}^{1}(x^3-9x)dx=c^3-9c\]
anonymous
  • anonymous
solve for c to get the values of the x-coordinates
thomas5267
  • thomas5267
The first mean value theorem for integration states If G : [a, b] → R is a continuous function and \(\varphi\) is an integrable function that does not change sign on the interval (a, b), then there exists a number x in [a, b] such that \[ \int_a^b G(t)\varphi (t) \, dt=G(x) \int_a^b \varphi (t) \, dt. \] Take \(\varphi(t)=1\) and you are done. Mean value theorem for integration applies for f(x). Find the x coordinate using peachpi's method. Copied shamelessly from Wikipedia.

Looking for something else?

Not the answer you are looking for? Search for more explanations.