mathmath333
  • mathmath333
Reasoning question
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
mathmath333
  • mathmath333
\(\large \color{black}{\begin{align} & \normalsize \text{Find the odd man out}\hspace{.33em}\\~\\ & a.)\ 324 \hspace{.33em}\\~\\ & b.)\ 244 \hspace{.33em}\\~\\ & c.)\ 514 \hspace{.33em}\\~\\ & d.)\ 136 \hspace{.33em}\\~\\ \end{align}}\)
mathmath333
  • mathmath333
\(324=2^{2}\times 3^{4}\\ 224=2^{2}\times 61\\ 514=2^{3}\times 257\\ 136=2^{3}\times 3^{4}\)
ganeshie8
  • ganeshie8
Hint : sum of digits

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

mathmath333
  • mathmath333
sum of digits \(324\rightarrow 9\\ 224\rightarrow 8\\ 514\rightarrow 10\\ 136\rightarrow 10\)
anonymous
  • anonymous
Using sum of digits, a) is the odd man out. Also, d) is odd man out considering the one's digit.
mathmath333
  • mathmath333
d.) correct ?
anonymous
  • anonymous
@mathmath333 , there's something wrong with your prime factorizations. And the second number is 244, not 224.
amilapsn
  • amilapsn
b) too @ospreytriple because its first digit isn't odd!
mathmath333
  • mathmath333
this one \(324=2^{2}\times 3^{4}\\ 244=2^{2}\times 61\\ 514=2\times 257\\ 136=2^{3}\times 3^{4}\)
anonymous
  • anonymous
@mathmath333 , \(136 = 2^3 \times 17\)
mathmath333
  • mathmath333
ok
thomas5267
  • thomas5267
It could be argued that 514 is the odd one as its prime factorisation contains only two primes. Or even the answer is none of above as all of the options are numbers not man.

Looking for something else?

Not the answer you are looking for? Search for more explanations.