Use mathematical induction to prove the statement is true for all positive integers n, or show why it is false.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Use mathematical induction to prove the statement is true for all positive integers n, or show why it is false.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[1^2+4^2+7^2+...+(3n−2)^2=\frac{ n(6n2−3n−1) }{ 2 }\]
An induction proof works like this: 1. Show the formula works for n = 1 2. Assume it works for n = k 3. Show it works for n = k + 1
Let's start. Can you show the formula works for n = 1? Copy the formula. Then rewrite the formula replacing n with 1. What do you get?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\(\Large 1^2+4^2+7^2+...+(3n−2)^2=\dfrac{ n(6n2−3n−1) }{ 2 }\) Let n = 1 \(\Large [3(1)−2)]^2=\dfrac{ 1(6 \cdot 1^22−3 \cdot 1−1) }{ 2 }\) \(\Large 1 = \dfrac{1(2)}{2} \) \(\Large 1 = 1\) We proved the expression works for n = 1.
Now we assume the expression is true for n = k: \(\Large 1^2 + 4^2 + 7^2 + ... + (3k - 2)^2 = \dfrac{k(6k^2 - 3k - 1)}{2} \)
Now we need o prove it works for n = k + 1 \(\Large 1^2 + 4^2 + 7^2 + ...+ (3k - 2)^2 + [3(k + 1) - 2]^2 =\) \(\Large = \dfrac{(k + 1) [6(k + 1)^2 - 3(k + 1) - 1]}{2} \) \(\Large = \dfrac{(k + 1)[6(k^2 + 2k + 1) - 3k -3 - 1]}{2} \) \(\Large = \dfrac{(k + 1)(6k^2 + 12k + 6 - 3k - 4)}{2} \) \(\Large = \dfrac{(k + 1)[6(k^2 + 2k + 1) - 3k - 3 - 1)}{2} \) \(\Large = \dfrac{(k + 1)[6(k + 1)^2 - 3(k + 1) - 1)}{2} \) The last expression above is the formula with k replaced by k + 1. This shows the formula works for n = k + 1. By induction, the formula has been proved to be true.
@madhu.mukherjee.946 Thanks!
Thank you for showing me the walk-through steps! Sorry that I went away from my compute! @mathstudent55

Not the answer you are looking for?

Search for more explanations.

Ask your own question