Find the length of the spiraling polar curve r=8e^(4θ) From 0 to 2π . i got this but it isn't right ((8sqrt(26)e^(8pi))/5)- ((8sqrt(26)e^(0))/5)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the length of the spiraling polar curve r=8e^(4θ) From 0 to 2π . i got this but it isn't right ((8sqrt(26)e^(8pi))/5)- ((8sqrt(26)e^(0))/5)

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

ok nick ignore all this we're starting over
|dw:1439169843790:dw|
|dw:1439169934972:dw|

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Ok so start here, we can go more in depth if you'd like, but for polar coordinates this is what you'll have to evaluate \[\int_0^{2 \pi}\sqrt{r^2+\left( \frac{dr}{d \theta} \right)^2 } d \theta \] I think you can probably evaluate r and dr/dtheta so there you have the actual formula. I can explain how to derive it if you're curious, but that's the answer. Ignore dan he's a dingus.
can explain please @empty

Not the answer you are looking for?

Search for more explanations.

Ask your own question