anonymous
  • anonymous
Find the length of the spiraling polar curve r=8e^(4θ) From 0 to 2π . i got this but it isn't right ((8sqrt(26)e^(8pi))/5)- ((8sqrt(26)e^(0))/5)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
dan815
  • dan815
ok nick ignore all this we're starting over
dan815
  • dan815
|dw:1439169843790:dw|
dan815
  • dan815
|dw:1439169934972:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Empty
  • Empty
Ok so start here, we can go more in depth if you'd like, but for polar coordinates this is what you'll have to evaluate \[\int_0^{2 \pi}\sqrt{r^2+\left( \frac{dr}{d \theta} \right)^2 } d \theta \] I think you can probably evaluate r and dr/dtheta so there you have the actual formula. I can explain how to derive it if you're curious, but that's the answer. Ignore dan he's a dingus.
anonymous
  • anonymous
can explain please @empty

Looking for something else?

Not the answer you are looking for? Search for more explanations.