wampominater
  • wampominater
Determine two pairs of polar coordinates for the point (4, -4) with 0° ≤ θ < 360°.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
wampominater
  • wampominater
so right now I have \[\cos(\theta) = \frac{ 4 }{ 4\sqrt{2} }\] and \[\sin(\theta)=-\frac{ 4 }{ 4\sqrt{2} }\] but i dont know where to go from here... please help!
jim_thompson5910
  • jim_thompson5910
the 4's cancel leaving with 1 over sqrt(2) for the first fraction
jim_thompson5910
  • jim_thompson5910
\[\Large \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

wampominater
  • wampominater
alright, but how do i make that a polar coordinate. i need to take the arc sin according to the examples in my book but that doesnt work here
wampominater
  • wampominater
and the arc cos
jim_thompson5910
  • jim_thompson5910
you can use the unit circle
wampominater
  • wampominater
oh wait cause now they are known values on the unit circle
jim_thompson5910
  • jim_thompson5910
look on the unit circle where the x coordinate is \(\Large \frac{1}{\sqrt{2}}\) or \(\Large \frac{\sqrt{2}}{2}\)
wampominater
  • wampominater
315
wampominater
  • wampominater
ok so the first polar coordinate would be \[\left( 4\sqrt{2} , 315\right)\]
jim_thompson5910
  • jim_thompson5910
yes
wampominater
  • wampominater
how would i find a second one equal to that?
jim_thompson5910
  • jim_thompson5910
|dw:1439180139138:dw|
jim_thompson5910
  • jim_thompson5910
|dw:1439180155156:dw|
jim_thompson5910
  • jim_thompson5910
Draw a line from (4,-4) through the origin |dw:1439180192858:dw|
jim_thompson5910
  • jim_thompson5910
|dw:1439180205002:dw|
wampominater
  • wampominater
so that would be 135 degrees?
jim_thompson5910
  • jim_thompson5910
yes so another polar point would be \(\Large \left( -4\sqrt{2} , 135\right)\)
wampominater
  • wampominater
ah ok, thank you for your help!
jim_thompson5910
  • jim_thompson5910
you start at the origin facing directly east then you turn 135 degrees counter clockwise still facing this direction, you walk backwards (hence the negative r value) 4*sqrt(2) units
wampominater
  • wampominater
alright that makes sense
wampominater
  • wampominater
thank you!
jim_thompson5910
  • jim_thompson5910
no problem

Looking for something else?

Not the answer you are looking for? Search for more explanations.