Determine exactly all values of a for which y=(a^2 +1)(x^2 - 1) - ax +7 has two real zeros whose sum equals their product.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Determine exactly all values of a for which y=(a^2 +1)(x^2 - 1) - ax +7 has two real zeros whose sum equals their product.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Hint: 1. Expand right hand side to get a polynomial in x. \(~~~~f(x)=y=a^2x^2+x^2-ax-a^2+6\) 2. Consider the quadratic in x, solve for x using the quadratic formula: \(A=a^2+1,~B=-a,~ C=-a^2+6\) call the solutions x1 and x2. x1 and x2 are functions of "a", i.e. are expressions in terms of "a". 3. Solve for "a" in the equation x1*x2=x1+x2. Reject complex values of a since they will make a complex coefficient in f(x), and hence result in complex roots of f(x). 4. substitute real roots of "a" into solutions x1 and x2 to make sure both x1 and x2 are real. Reject value(s) of "a" that make x1 or x2 complex. 5. The two remaining values of a are the required solution. 6. Substitute these value of "a" into the original equation and ensure that all conditions are satisfied, i.e. x1*x2=x1+x2. These values of "a" turn out to be negative integers.
* negative and positive integers.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question