mathmath333
  • mathmath333
question
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
mathmath333
  • mathmath333
\(\large \color{black}{\begin{align} & \normalsize \text{Choose the incorrect relation(s) from the following}\hspace{.33em}\\~\\ & i.)\ \sqrt{6}+\sqrt{2}=\sqrt{5}+\sqrt{3}\hspace{.33em}\\~\\ & ii.)\ \sqrt{6}+\sqrt{2}<\sqrt{5}+\sqrt{3}\hspace{.33em}\\~\\ & iii.)\ \sqrt{6}+\sqrt{2}>\sqrt{5}+\sqrt{3}\hspace{.33em}\\~\\ & a.)\ i.) \ \text{and}\ iii.)\hspace{.33em}\\~\\ & b.)\ ii.) \ \text{and}\ iii.)\hspace{.33em}\\~\\ & c.)\ i.) \hspace{.33em}\\~\\ & d.)\ ii.) \hspace{.33em}\\~\\ \end{align}}\)
mathmath333
  • mathmath333
i have to solve this with in a minute
mathivh
  • mathivh
If a calculator is allowed you could just calculate the decimal values of both sides and check if they are equal.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

mathmath333
  • mathmath333
lol no calculator is allowed
ganeshie8
  • ganeshie8
In view of arriving at a contradiction, lets suppose that \(\sqrt{6}+\sqrt{2}=\sqrt{5}+\sqrt{3}\). Square both sides and get \(6+2+2\sqrt{12}=5+3+2\sqrt{15}\). \(\implies \sqrt{12}=\sqrt{15}\) which is wrong. So the initial assumption is wrong.
mathmath333
  • mathmath333
ok
ganeshie8
  • ganeshie8
Alternatively you may work it like this : \[\large{\begin{align} \sqrt{6}+\sqrt{2}~~&\stackrel{?}{}~~\sqrt{5}+\sqrt{3}\\~\\ (\sqrt{6}+\sqrt{2})^2~~&\stackrel{?}{}~~(\sqrt{5}+\sqrt{3})^2\\~\\ 6+2+2\sqrt{12}~~&\stackrel{?}{}~~ 5+3+2\sqrt{15}\\~\\ \sqrt{12}~~&\stackrel{?}{}~~ \sqrt{15}\\~\\ \sqrt{12}~~&\lt~~ \sqrt{15} \end{align}}\] since the numbers are positive, the implications will work in the reverse direction also. read it from bottom to top.
mathmath333
  • mathmath333
option 1 is incorrect
ganeshie8
  • ganeshie8
i and iii are wrong
mathmath333
  • mathmath333
thnks

Looking for something else?

Not the answer you are looking for? Search for more explanations.