anonymous
  • anonymous
Use the given paragraph proof to write a two-column proof. Given: Triangle XYZ is a right triangle. ÐZ is a right angle. Prove: ÐX and ÐY are complementary angles. Triangle XYZ is a right triangle, and ÐZ is a right angle. So, mÐZ = 90° by the definition of a right angle. By the Triangle Sum Theorem, mÐX + mÐY + mÐZ = 180°. By the Subtraction Property of Equality, mÐX + mÐY + mÐZ – mÐZ = 180° – mÐZ. So, mÐX + mÐY = 90°. Therefore, ÐX and ÐY are complementary angles by the definition of complementary angles.
Mathematics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

anonymous
  • anonymous
Use the given paragraph proof to write a two-column proof. Given: Triangle XYZ is a right triangle. ÐZ is a right angle. Prove: ÐX and ÐY are complementary angles. Triangle XYZ is a right triangle, and ÐZ is a right angle. So, mÐZ = 90° by the definition of a right angle. By the Triangle Sum Theorem, mÐX + mÐY + mÐZ = 180°. By the Subtraction Property of Equality, mÐX + mÐY + mÐZ – mÐZ = 180° – mÐZ. So, mÐX + mÐY = 90°. Therefore, ÐX and ÐY are complementary angles by the definition of complementary angles.
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Looking for something else?

Not the answer you are looking for? Search for more explanations.