Given the parent functions f(x) = log10 x and g(x) = 5x − 2, what is f(x) • g(x)?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Given the parent functions f(x) = log10 x and g(x) = 5x − 2, what is f(x) • g(x)?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[f(x)g(x) = \log_{10}x (5x-2)\]
You're just multiplying the functions

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Thanks! Can I ask one more?
If f(x) = log2 (x + 4), what is f−1(3)?
The \[f^{-1}\] represents inverse
yes:)
To find the inverse: Replace f(x) with y Switch x's and y's, so put x where y is and x where y is. Solve for y Replace y with f^-1(x)
Once you find the inverse just plug in 3 into the function and evaluate :-)
y=log2(x+4)
good keep going
x=log2(y+4)
right
im confused on how to solve for "Y"
Since it's \[\log_2\] as the base we will have to take the power of 2 to on both sides so the following \[\huge 2^x = 2^{\log_2(y+4)} \implies 2^x = y+4\]
hmm then wouldnt we have to get y alone?
Would the answer be 8?
f(a) =b , hence \(f^{-1} (b) =a\) ok?
we need find \(f^{-1} (3) \) of \(f(x) = log 2(x+4)\), right? That is just let log 2(x+4) =3, and solve for x.
You can do either way you should get same result
2?
No, \[y=2^x-4 \implies f^{-1}(x) = 2^x-4 \implies f^{-1}(3) = 2^3-4\]
oh! okay so then I got, 4
confirm: \(log (2(x+4))\) or (x+4)*log 2??
Yes, 4 sounds betters :)
2x2x2=4x2=8 8-4=4 :)
I think the original question was \[\log_2(x+4)\] right?
yes
Ok we're good then
Thanks @Loser66
yay! Thanks guysss:)
ok, clear.

Not the answer you are looking for?

Search for more explanations.

Ask your own question