itsmichelle29
  • itsmichelle29
help plz medal and fan Simplify sin^2 theta /1- cos^2 theta
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Nnesha
  • Nnesha
\[\huge\rm cos^2 \theta + \sin^2 \theta =1 \]you should remember this equation!!
Nnesha
  • Nnesha
solve for sin^2theta
anonymous
  • anonymous
-cos(2 theta) 2 sin^2(theta)-1

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

itsmichelle29
  • itsmichelle29
cos^2 theta .. yes ????
Nnesha
  • Nnesha
what about it ? :=)
itsmichelle29
  • itsmichelle29
is that the answer ????
Nnesha
  • Nnesha
no
itsmichelle29
  • itsmichelle29
Okay let me try and get it
Nnesha
  • Nnesha
sure!
imqwerty
  • imqwerty
sin^2theta +cos^2theta = 1 1-cos^2theta=sin^2theta so we can write -> sin^2theta/sin^2theta = 1 but the condition is that sin(theta) does not equal 0
itsmichelle29
  • itsmichelle29
sin2theta
itsmichelle29
  • itsmichelle29
Yes ??
Nnesha
  • Nnesha
that's one of the option....
imqwerty
  • imqwerty
can u explain how did u get sin2theta
itsmichelle29
  • itsmichelle29
By 1-cos2theta=sin2theta........................... i think
Nnesha
  • Nnesha
\[\frac{ \sin^2\theta }{\color{ReD}{ 1-\cos^2 }}\] now replace 1-cos^2for sin^2x bec 1-cos^2x=sin^2x
itsmichelle29
  • itsmichelle29
Omg i dont understand
Nnesha
  • Nnesha
\[\huge\rm cos^2 \theta + \sin^2 \theta =1 \] solve for sin^2\[\rm sin^2\theta=1-\cos^2\theta\] you will get sin^2 =1-cos^2 right ?
itsmichelle29
  • itsmichelle29
Yes
Nnesha
  • Nnesha
okay so if sin^2theta =1-cos^2 you can replace the (1-cos^2) which is at the dneominator with sin^2 theta right ?
Nnesha
  • Nnesha
\[\huge\rm \frac{ \sin^2\theta }{\color{ReD}{ 1-\cos^2 }}\] replace 1-cos^2for sin^2x bec \[\huge\rm \color{reD}{ 1-\cos^2x}=\sin^2x \]
itsmichelle29
  • itsmichelle29
so the answer is sin right
Nnesha
  • Nnesha
\[\frac{ \sin^2 x }{ \color{reD}{\sin^2x}}=?\]
Nnesha
  • Nnesha
let sin^2x = a so a/a = ??
Nnesha
  • Nnesha
a divide by a = ??
itsmichelle29
  • itsmichelle29
0
Nnesha
  • Nnesha
no never!
Nnesha
  • Nnesha
there is always invisible one!!
Nnesha
  • Nnesha
2/2 = ??
itsmichelle29
  • itsmichelle29
1 lol
Nnesha
  • Nnesha
ye.-.
itsmichelle29
  • itsmichelle29
okay thnks

Looking for something else?

Not the answer you are looking for? Search for more explanations.