anonymous
  • anonymous
Verify the identity. Show your work. cos(α - β) - cos(α + β) = 2 sin α sin β my answer>cos=o
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Teacher:Use the sum and difference formulas for this me:wtf you mean
anonymous
  • anonymous
@misty1212
sohailiftikhar
  • sohailiftikhar
cos(a-b)=cos(a)cos(b)+sin(a)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) these are the formulas

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
woow ok so do i use both of them or what
sohailiftikhar
  • sohailiftikhar
you have both terms cos(a-b) and cos(a+b) so use both
sohailiftikhar
  • sohailiftikhar
in this problem
anonymous
  • anonymous
ok so this is a practice question imma gonna be graded on so can you help me plz
sohailiftikhar
  • sohailiftikhar
ok
anonymous
  • anonymous
2cos(A)cos(B)=2cos(A)cos(B) ok so i got this instead is this right
anonymous
  • anonymous
@misty
sohailiftikhar
  • sohailiftikhar
no it's not right
sohailiftikhar
  • sohailiftikhar
ok i'm going to solve it
sohailiftikhar
  • sohailiftikhar
\[\cos(\alpha-\beta)-\cos(\alpha+\beta)=(\cos \alpha \cos \beta +\sin \alpha \sin \beta)-(\cos \alpha \cos \beta -\sin \alpha \sin \beta )\]
sohailiftikhar
  • sohailiftikhar
now \[\cos \alpha \cos \beta +\sin \alpha \sin \beta -\cos \alpha \cos \beta +\sin \alpha \sin \beta =2 \sin \alpha \sin \beta \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.