anyone know how to figure this out?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

anyone know how to figure this out?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

..
1 Attachment
http://www.wolframalpha.com/input/?i=solve%20-11x^4%20-3x^3%20-%2010x^2%20%2B9x%20%2B%2018%20%3D%200&t=ff3tb01
Without going to a computer you can solve this. First question. Is there a zero between \(0\) and \(1\). YES! The function is continuous, \(f(0)>0\) and \(f(1)<0\) and so by the intermediate value theorem it must obtain \(0\) as a value on \((0,1)\).

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

The same reason answers part b)
Do something similar for the rest, note that you can only have at most \(4\).
Hmm with that being said would the answer be D then?

Not the answer you are looking for?

Search for more explanations.

Ask your own question