anonymous
  • anonymous
Use the graph of f(t) = 2t + 1 on the interval [–1, 4] to write the function F(x), where F(x) = int{f(t) dt} from 2 to x
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
triciaal
  • triciaal
|dw:1439302128974:dw|
anonymous
  • anonymous
okay but its a definite integral so how do i implement the boundaries ?
triciaal
  • triciaal
|dw:1439303062243:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
okay thank you
anonymous
  • anonymous
dont i need to find C though?
anonymous
  • anonymous
no u don't need to since it's a definite integral
triciaal
  • triciaal
f(t) goes from -1 to 9
anonymous
  • anonymous
no constant in definite integrals ?
triciaal
  • triciaal
as above with definite the C cancels out
anonymous
  • anonymous
\[t^2 + t + 6 \] ?
anonymous
  • anonymous
- 6
anonymous
  • anonymous
\[F(x)=[t^2+t]^{x}_{2}\]
anonymous
  • anonymous
Isn't a function of x if it has the variable t instead of "x"
triciaal
  • triciaal
|dw:1439303536671:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.