Imtiaz7
  • Imtiaz7
Help Please...!
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Imtiaz7
  • Imtiaz7
Reduce following matrix into Reduce Echlon Form:|dw:1439303190612:dw|
Imtiaz7
  • Imtiaz7
@UsukiDoll
anonymous
  • anonymous
@pooja195

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Oooh... the matrix :>
anonymous
  • anonymous
\[\Large \left[\begin{matrix}1&-1&2&1\\5&0&4&2\\4&1&2&0\\1&1&1&1\end{matrix}\right|\left.\begin{matrix}1\\3\\1\\0\end{matrix}\right]\]
anonymous
  • anonymous
I'm awesome :)
anonymous
  • anonymous
What did you try?
anonymous
  • anonymous
@Imtiaz7
Imtiaz7
  • Imtiaz7
I try but couldnt get right answer
anonymous
  • anonymous
That's because you don't use magic :D
Imtiaz7
  • Imtiaz7
will you teach me magic :D
anonymous
  • anonymous
Well, let's see now: Add the first row to the third \[\Large \left[\begin{matrix}1&-1&2&1\\5&0&4&2\\5&0&4&1\\1&1&1&1\end{matrix}\right|\left.\begin{matrix}1\\3\\2\\0\end{matrix}\right] \]
anonymous
  • anonymous
Any suggestions from you?
Imtiaz7
  • Imtiaz7
Can you tell me why?
anonymous
  • anonymous
Well, look what happened? It looks nice :D You can easily subtract the second row from the third, and get something simple... \[\Large \left[\begin{matrix}1&-1&2&1\\5&0&4&2\\0&0&0&-1\\1&1&1&1\end{matrix}\right|\left.\begin{matrix}1\\3\\-1\\0\end{matrix}\right] \]
Imtiaz7
  • Imtiaz7
how the first element of third row becomes zero
anonymous
  • anonymous
Subtracted the second row from the third? 5 - 5 = 0
Imtiaz7
  • Imtiaz7
Okay
anonymous
  • anonymous
We can add the third row to the first and fourth row to get \[\Large \left[\begin{matrix}1&-1&2&0\\5&0&4&2\\0&0&0&-1\\1&1&1&0\end{matrix}\right|\left.\begin{matrix}0\\3\\-1\\-1\end{matrix}\right] \]
Imtiaz7
  • Imtiaz7
ok..
anonymous
  • anonymous
Also add twice the third row to the second row \[\Large \left[\begin{matrix}1&-1&2&0\\5&0&4&0\\0&0&0&-1\\1&1&1&0\end{matrix}\right|\left.\begin{matrix}0\\1\\-1\\-1\end{matrix}\right] \] Maybe you should work out the rest. It's much simpler now ^.^
Imtiaz7
  • Imtiaz7
okay thnaks :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.