Help Please...!

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Help Please...!

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Reduce following matrix into Reduce Echlon Form:|dw:1439303190612:dw|

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Oooh... the matrix :>
\[\Large \left[\begin{matrix}1&-1&2&1\\5&0&4&2\\4&1&2&0\\1&1&1&1\end{matrix}\right|\left.\begin{matrix}1\\3\\1\\0\end{matrix}\right]\]
I'm awesome :)
What did you try?
I try but couldnt get right answer
That's because you don't use magic :D
will you teach me magic :D
Well, let's see now: Add the first row to the third \[\Large \left[\begin{matrix}1&-1&2&1\\5&0&4&2\\5&0&4&1\\1&1&1&1\end{matrix}\right|\left.\begin{matrix}1\\3\\2\\0\end{matrix}\right] \]
Any suggestions from you?
Can you tell me why?
Well, look what happened? It looks nice :D You can easily subtract the second row from the third, and get something simple... \[\Large \left[\begin{matrix}1&-1&2&1\\5&0&4&2\\0&0&0&-1\\1&1&1&1\end{matrix}\right|\left.\begin{matrix}1\\3\\-1\\0\end{matrix}\right] \]
how the first element of third row becomes zero
Subtracted the second row from the third? 5 - 5 = 0
Okay
We can add the third row to the first and fourth row to get \[\Large \left[\begin{matrix}1&-1&2&0\\5&0&4&2\\0&0&0&-1\\1&1&1&0\end{matrix}\right|\left.\begin{matrix}0\\3\\-1\\-1\end{matrix}\right] \]
ok..
Also add twice the third row to the second row \[\Large \left[\begin{matrix}1&-1&2&0\\5&0&4&0\\0&0&0&-1\\1&1&1&0\end{matrix}\right|\left.\begin{matrix}0\\1\\-1\\-1\end{matrix}\right] \] Maybe you should work out the rest. It's much simpler now ^.^
okay thnaks :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question