anonymous
  • anonymous
For the function f(x) = 3(x − 1)2 + 2, identify the vertex, domain, and range. The vertex is (1, 2), the domain is all real numbers, and the range is y ≥ 2. The vertex is (1, 2), the domain is all real numbers, and the range is y ≤ 2. The vertex is (–1, 2), the domain is all real numbers, and the range is y ≥ 2. The vertex is (–1, 2), the domain is all real numbers, and the range is y ≤ 2.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
correct answer gets medal and fan
anonymous
  • anonymous
@Robert136
anonymous
  • anonymous
@ali2x2

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
@heretohelpalways
anonymous
  • anonymous
@taramgrant0543664
jigglypuff314
  • jigglypuff314
Hi there :) Sorry for being a little late to respond .-. they have given you the equation in "vertex form" where \( f(x) = a(x-h)^2+k \) where the point \( (h,~k) \) is the vertex comparing this "form" to your \( f(x) = 3(x-1)^2 + 2 \) we can see that \( h=1 \) and \(k=2\) putting this as a point \((h,k)\), you would get the proper vertex point that they are asking for :)
jigglypuff314
  • jigglypuff314
The other deciding factor in your options, it seems, would be the range. If you have seen a picture of a \(parabola\) before [it looks like a U] from this we can say that anything above the vertex (in this case) would be included in the range so since we got that the y value of the vertex to be \(k=2\) we can say that the range of this function would be greater than and including \(2\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.