Three functions are given below: f(x), g(x), and h(x). Explain how to find the axis of symmetry for each function, and rank the functions based on their axis of symmetry (from smallest to largest).

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Three functions are given below: f(x), g(x), and h(x). Explain how to find the axis of symmetry for each function, and rank the functions based on their axis of symmetry (from smallest to largest).

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

f(x) is in vertex form \[f(x) = (x - h) ^2 + k\] the line of symmetry is h so match this to your equation

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

in g(x) its in standard form \[y = ax^2 + bx + c\] the line of symmetry is \[x = \frac{-b}{2 \times a}\] so match a and b to your equation
in h(x) what is the x value when the curve reaches it's highest point..? that's the line of symmetry

Not the answer you are looking for?

Search for more explanations.

Ask your own question