anonymous
  • anonymous
Slope of the tangent line to the polar curve r=sin(6theta). Theta =pi/12. Find slope
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Please help
IrishBoy123
  • IrishBoy123
you are looking for the slope in x-y coordinates you need this: \(\huge \frac{dy}{dx} = \frac{\frac{dr}{d \theta} sin \ \theta + r \ cos \ \theta} {\frac{dr}{d \theta} cos \theta - r sin \ \theta}\) \(\large \frac{dr}{d \theta} = \frac{d}{d \theta} (sin6\theta) = 6 cos 6 \theta\) \(\large \theta = \frac{\pi}{12} \implies \frac{dr}{d \theta} = 6 cos (6 *(\frac{\pi}{12})) =6 cos (\pi/2 ) = 0\) \(\large r(\frac{\pi}{12}) = sin(6 \theta) = sin(6*\frac{\pi}{12}) = sin( \pi / 2) = 1\) \(\large \frac{dy}{dx} = -cot (\frac{\pi}{12}) \)
anonymous
  • anonymous
So what is the slope?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Australopithecus
  • Australopithecus
You need the formula \[\frac{dy}{dx} = \frac{\frac{dr}{d \theta} \sin(\theta) + r*\cos(\theta)}{\frac{dr}{d \theta}\cos(\theta) - r*\sin(\theta)}\] so take the derivative of sin(6theta) and plug into the formula for example if I had 4 The derivative would be 0 so I would plug that into my formula: (0*sin(theta) + 4cos(theta) )/(0*cos(theta) -4sin(theta)) Simplify then plug Theta =pi/12 into your formula and solve and you should get your derivative
Australopithecus
  • Australopithecus
in my example r = 4
Australopithecus
  • Australopithecus
This video explains the method nicely https://www.youtube.com/watch?v=GkhOx4hUssA
anonymous
  • anonymous
What would it be for me
IrishBoy123
  • IrishBoy123
-3.73 i make it steep !
Australopithecus
  • Australopithecus
I will give you an example one second
anonymous
  • anonymous
Thank u
IrishBoy123
  • IrishBoy123
again \( \theta\) can be blagged because \(\theta = \pi / 12\) sits on the extreme of a petal and on the circle [of radius 1]
Australopithecus
  • Australopithecus
http://www.wolframalpha.com/input/?i=%286cos%286x%29*sin%28x%29+%2B+sin%286x%29cos%28x%29%29%2F%286cos%286x%29cos%28x%29+-+sin%286x%29*sin%28x%29%29%2C+x+%3D+pi%2F12
Australopithecus
  • Australopithecus
Here is the explicit answer just hit approximate for result and you will see the result I recommend you check it out
mathmate
  • mathmate
\(r=sin(6\theta)~ and~ \theta=\pi/12, so~ r=sin(6\pi/12)=sin(\pi/2)=1\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.