anonymous
  • anonymous
nick1234567 Area of one leaf of the rose r=3sin(4theta)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Michele_Laino
  • Michele_Laino
I'm very sorry, it is 2:38 a.m. (Italy time zone) from me so I have to go to sleep
anonymous
  • anonymous
Please help!
anonymous
  • anonymous
Need answer in next 3 mins please

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Ur the best!
pooja195
  • pooja195
ok any ideas on where to start?
anonymous
  • anonymous
Nope no clue and it's my last prob due in 3 mins
anonymous
  • anonymous
Can u please save me
pooja195
  • pooja195
http://www.wolframalpha.com/input/?i=r%3D3sin%284theta%29
anonymous
  • anonymous
So? Area is?
anonymous
  • anonymous
Only have 1min left thank u again
anonymous
  • anonymous
Ideas???
anonymous
  • anonymous
Needs suggestion in the ext 39 sec
pooja195
  • pooja195
Things like this cant be done in that much time. You need to make sure you have time for it
pooja195
  • pooja195
You will need to use \[\huge~\rm~\int\limits_{}^{}1/2r^2d \emptyset\]
IrishBoy123
  • IrishBoy123
if this is an emergency, this is a brief attempt: \(r=3sin(4 \theta)\) \(r = 0, \ 4\theta = 0, \ \pi \implies \theta = 0, \pi/4, ....\) \(A = \frac{1}{2} \int_{0}^{\pi / 4} 9 sin^2 (4 \theta) \ d \theta \) \( = \frac{9}{4} \ \int_{0}^{\pi / 4} 1 - cos \ 8 \theta \ d \theta\) \( = \frac{9}{4} \ [ \theta - \frac{1}{8}sin \ 8 \theta \ ]_{0}^{\pi / 4}\) \( = \frac{9}{4} \ [ \frac{\pi}{4} ] = \frac{9 \pi}{16}\)
pooja195
  • pooja195
^or that works too ;p
pooja195
  • pooja195
You will need to use \[\huge~\rm~\int\limits_{}^{}1/2r^2d \theta\] \[\huge~\rm~\int\limits\limits_{\alpha }^{\beta }1/2r^2d \theta \] \[\huge~\rm~\int\limits\limits\limits_{0 }^{\ \pi/4 }1/2(3\sin(4\theta))^2d \theta =\frac{ 9 }{ 16 }\pi \]
Jack1
  • Jack1
lol... why is this q orange?

Looking for something else?

Not the answer you are looking for? Search for more explanations.