Find the inverse of the function. f(x) = the cube root of quantity x divided by nine. - 4

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the inverse of the function. f(x) = the cube root of quantity x divided by nine. - 4

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\(\Large f(x)=\sqrt[3]{ \frac x9}-4\) make f(x) = y \(\Large y=\sqrt[3]{ \frac x9}-4\) swap x and y terms \(\huge \color{red}x=\sqrt[3]{ \frac {\color{red}y}9}-4\) now put x in terms of y \(\Large x=\sqrt[3]{ \frac y9}-4\) \(\Large x+4=\sqrt[3]{ \frac y9}\) \(\Large (x+4)^3=\frac y9\) \(\Large 9(x+4)^3=y\) \(\Large 9(x+4)^3=f^{-1}(x)\) \(\Large f^{-1}(x) = 9(x+4)^3\) does this make sense @PHUNISH ?
Ohh yeah for some reason I kept cubing the x idk how or why thanks though!

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

np dude ;)
I have a couple more I got wrong if you could explain them to me, ill tag you in them
cools ;)

Not the answer you are looking for?

Search for more explanations.

Ask your own question