Find the equation of an ellipse with vertices (3, 0) and (-3, 0) and foci of (2, 0) and (-2, 0). I dont know which formula to use!!! Please help me out?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the equation of an ellipse with vertices (3, 0) and (-3, 0) and foci of (2, 0) and (-2, 0). I dont know which formula to use!!! Please help me out?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

I know the answer to this question, its given in my textbook, but Im so confused on when to use which formula: The Major Axis Horizontal Formula? \[\frac{ x ^{2} }{ a ^{2} }+\frac{ y ^{2} }{ b ^{2} }\] Or the Major Axis Vertical Formula? \[\frac{ x ^{2} }{ b ^{2} }+\frac{ y ^{2} }{ a ^{2} }\]
First off, let's graph it.|dw:1439370727299:dw|
From our formula for an ellipse, \(\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}\) we find that our center lies at \((0,0)\), therefore our equation turns into: \[\frac{x^2}{a^2}+\frac{y^2}{b^2}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

And if our center is greater than zero, we use the other formula?
Secondly, just by graphing it, and looking at where our focus and vertices lie, we know that our ellipse is stretching horizontally, therefore \(a^2\) corresponds with \(x\) and \(b^2\) corresponds with \(y\)
We can now use the formula \(c^2=a^2+b^2\) to find our value of b.
We have our value of \(a\), and that is the distance from the center to one of the vertices along the `major` axis. Therefore, \(a=3\)|dw:1439371651892:dw|
\(c\) is our distance from the center to one of the two foci. Therefore \(c=2\)|dw:1439371729613:dw|
using the pythagorean theorem, be can find \(b\). \[c^2=a^2+b^2 \iff b^2=c^2-a^2\]
Do you see it now? With the given information, do you understand why I chose the formula I chose and how to input the information to find your equation?

Not the answer you are looking for?

Search for more explanations.

Ask your own question