I NEED HELP HERE

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

I NEED HELP HERE

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

@Michele_Laino PLEASE POST IT HERE WHEN YOU ARE THROUGH
CAN ANYONE HELP PLEASE

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

cant open the file... u have a screenshot dude?
no
http://prntscr.com/83uvhy
Screenie for @jack1
http://prntscr.com/83uvhy
@Michele_Laino please help with this open question
by definition of the limit value, we can write this: \[\Large \forall \varepsilon ,\exists \delta |{\left\| {x - {x_0}} \right\|_{{\mathbb{R}^n}}} \leqslant \delta \Rightarrow \left| {f\left( x \right) - L} \right| \leqslant \varepsilon \]
that is the definition of the limit value of f(x) when x--->x_0
similarly for g(x): \[\Large \forall \varepsilon ,\exists \delta \;|\;\;{\left\| {x - {x_0}} \right\|_{{\mathbb{R}^n}}} \leqslant \delta \Rightarrow \left| {g\left( x \right) - M} \right| \leqslant \varepsilon \]
where the symbol: \[\Large {\left\| x -x_0 \right\|_{{\mathbb{R}^n}}}\] stands for the norm of R^n
of course I mean \[\Large \forall \varepsilon > 0,\exists \delta > 0\]
namely, \epsilon and \delta are both positive numbers
tell me when I may continue
ok continue sir
now, we can show, that if f(x)--->L, when x--->x_0, then: (af)(x)---> aL, when x--->x_0, here is the proof:
by definition, of limit value, we can write: \[\Large \forall \varepsilon > 0,\exists \delta > 0|{\left\| {x - {x_0}} \right\|_{{\mathbb{R}^n}}} \leqslant \delta \Rightarrow \left| {f\left( x \right) - L} \right| \leqslant \varepsilon /\left| a \right|\]
and therefore, we have: \[\large \left| {\left( {af} \right)\left( x \right) - aL} \right| = \left| {af\left( x \right) - aL} \right| = \left| a \right|\left| {f\left( x \right) - L} \right| \leqslant \left| a \right| \cdot \left( {\varepsilon /\left| a \right|} \right) = \varepsilon \]
\[\Large \begin{gathered} \left| {\left( {af} \right)\left( x \right) - aL} \right| = \left| {af\left( x \right) - aL} \right| = \hfill \\ \hfill \\ = \left| a \right|\left| {f\left( x \right) - L} \right| \leqslant \left| a \right| \cdot \left( {\varepsilon /\left| a \right|} \right) = \varepsilon \hfill \\ \end{gathered} \]
so we are done!
similarly, if g(x)--->M, when x--->x_0, then, we have: (bg)(x)---> bM, when x--->x_0
but we have addition, subtraction, multiplication and division?
yes! I know, at the moment I have proven that, if: f--->L then af--->aL
next I will prove that if f--->L and g--->M, then: f+g--->L+M
ok sir . so is that for 3I in the question?
yes! exactly
here is the proof:
by hypothesis, we can write this: \[\Large \begin{gathered} \forall \varepsilon > 0,\exists \delta > 0|{\left\| {x - {x_0}} \right\|_{{\mathbb{R}^n}}} \leqslant \delta \Rightarrow \left| {f\left( x \right) - L} \right| \leqslant \varepsilon /2 \hfill \\ \hfill \\ \forall \varepsilon > 0,\exists \delta > 0\;|\;\;{\left\| {x - {x_0}} \right\|_{{\mathbb{R}^n}}} \leqslant \delta \Rightarrow \left| {g\left( x \right) - M} \right| \leqslant \varepsilon /2 \hfill \\ \end{gathered} \]
then we have: \[\Large \begin{gathered} \left| {f\left( x \right) + g\left( x \right) - \left( {L + M} \right)} \right| = \left| {f\left( x \right) - L + g\left( x \right) - M} \right| \leqslant \hfill \\ \hfill \\ \leqslant \left| {f\left( x \right) - L} \right| + \left| {g\left( x \right) - M} \right| \leqslant \frac{\varepsilon }{2} + \frac{\varepsilon }{2} = \varepsilon \hfill \\ \end{gathered} \]
so, we are done!
now, the property i) is completely proven
ok sir
next I give the proof of property ii)
here, by hypothesis, we can write this: \[\large \begin{gathered} \forall \varepsilon > 0,\exists \delta > 0|{\left\| {x - {x_0}} \right\|_{{\mathbb{R}^n}}} \leqslant \delta \Rightarrow \left| {f\left( x \right) - L} \right| \leqslant \varepsilon /2K \hfill \\ \hfill \\ \forall \varepsilon > 0,\exists \delta > 0\;|\;\;{\left\| {x - {x_0}} \right\|_{{\mathbb{R}^n}}} \leqslant \delta \Rightarrow \left| {g\left( x \right) - M} \right| \leqslant \varepsilon /2K \hfill \\ \hfill \\ K = \max \left( {1 + \left| M \right|,1 + \left| L \right|} \right) \hfill \\ \end{gathered} \]
herefore, we have the subsequent steps: \[\large \begin{gathered} \left| {f\left( x \right)g\left( x \right) - LM} \right| = \left| {f\left( x \right)g\left( x \right) - Lg\left( x \right) + Lg\left( x \right) - LM} \right| = \hfill \\ \hfill \\ = \left| {\left( {f\left( x \right) - L} \right)g\left( x \right) + L\left( {g\left( x \right) - M} \right)} \right| \leqslant \hfill \\ \hfill \\ \leqslant \left| {g\left( x \right)} \right| \cdot \left| {f\left( x \right) - L} \right| + \left| L \right| \cdot \left| {g\left( x \right) - M} \right| \hfill \\ \end{gathered} \]
I have added and subtracted the quantity L*g(x)
next we note that: \[\left| {g\left( x \right)} \right| = \left| {g\left( x \right) - M + M} \right| \leqslant \left| {g\left( x \right) - M} \right| + \left| M \right| \leqslant 1 + \left| M \right|\]
\[\large \left| {g\left( x \right)} \right| = \left| {g\left( x \right) - M + M} \right| \leqslant \left| {g\left( x \right) - M} \right| + \left| M \right| \leqslant 1 + \left| M \right|\]
more precisely: \[\Large \begin{gathered} \left| {g\left( x \right)} \right| = \left| {g\left( x \right) - M + M} \right| \leqslant \left| {g\left( x \right) - M} \right| + \left| M \right| \leqslant \hfill \\ \hfill \\ \leqslant \varepsilon + \left| M \right| \leqslant 1 + \left| M \right| \hfill \\ \end{gathered} \]
so, we can write: \[\large \begin{gathered} \left| {f\left( x \right)g\left( x \right) - LM} \right| = \left| {f\left( x \right)g\left( x \right) - Lg\left( x \right) + Lg\left( x \right) - LM} \right| = \hfill \\ \hfill \\ = \left| {\left( {f\left( x \right) - L} \right)g\left( x \right) + L\left( {g\left( x \right) - M} \right)} \right| \leqslant \hfill \\ \hfill \\ \leqslant \left| {g\left( x \right)} \right| \cdot \left| {f\left( x \right) - L} \right| + \left| L \right| \cdot \left| {g\left( x \right) - M} \right| \leqslant \hfill \\ \hfill \\ \leqslant \left( {1 + \left| M \right|} \right) \cdot \left| {f\left( x \right) - L} \right| + \left| L \right| \cdot \left| {g\left( x \right) - M} \right| \leqslant \hfill \\ \hfill \\ \leqslant K\left( {\left| {f\left( x \right) - L} \right| + \left| {g\left( x \right) - M} \right|} \right) \leqslant \hfill \\ \hfill \\ \leqslant K\left( {\frac{\varepsilon }{{2K}} + \frac{\varepsilon }{{2K}}} \right) = \varepsilon \hfill \\ \end{gathered} \]
so, we are done
thanks. great. so we are left with one now
yes! we have to prove the property iii)
again, by hypothesis, we can write this: \[\large \begin{gathered} \forall \varepsilon > 0,\exists \delta > 0|{\left\| {x - {x_0}} \right\|_{{\mathbb{R}^n}}} \leqslant \delta \Rightarrow \left| {f\left( x \right) - L} \right| \leqslant \varepsilon /2K \hfill \\ \hfill \\ \forall \varepsilon > 0,\exists \delta > 0\;|\;\;{\left\| {x - {x_0}} \right\|_{{\mathbb{R}^n}}} \leqslant \delta \Rightarrow \left| {g\left( x \right) - M} \right| \leqslant \varepsilon /2K \hfill \\ \hfill \\ K = \max \left( {\frac{{\left| M \right|}}{{\left| {M - \varepsilon } \right|\left| M \right|}},\frac{{\left| L \right|}}{{\left| {M - \varepsilon } \right|\left| M \right|}}} \right) \hfill \\ \end{gathered} \]
then we have: \[\large \begin{gathered} \left| {\frac{{f\left( x \right)}}{{g\left( x \right)}} - \frac{L}{M}} \right| = \left| {\frac{{f\left( x \right)M - g\left( x \right)L}}{{g\left( x \right)M}}} \right| = \hfill \\ \hfill \\ = \left| {\frac{{f\left( x \right)M - LM + LM - g\left( x \right)L}}{{g\left( x \right)M}}} \right| = \hfill \\ \hfill \\ = \frac{{M\left( {f\left( x \right) - L} \right) + L\left( {M - g\left( x \right)} \right)}}{{g\left( x \right)M}} \leqslant \hfill \\ \hfill \\ \leqslant \frac{{\left| M \right|\left| {f\left( x \right) - L} \right| + \left| L \right|\left| {M - g\left( x \right)} \right|}}{{\left| {g\left( x \right)} \right|\left| M \right|}} \hfill \\ \end{gathered} \]
I have added and subtracted the quantity L*M
now, by hypothesis, we can write: \[\Large g\left( x \right) \geqslant M - \frac{\varepsilon }{{2K}} \geqslant M - 1\] or: \[\Large \frac{1}{{g\left( x \right)}} \leqslant \frac{1}{{M - 1}} \Rightarrow \frac{1}{{\left| {g\left( x \right)} \right|}} \leqslant \frac{1}{{\left| {M - 1} \right|}}\]
therefore, we have: \[\large \begin{gathered} \left| {\frac{{f\left( x \right)}}{{g\left( x \right)}} - \frac{L}{M}} \right| = \left| {\frac{{f\left( x \right)M - g\left( x \right)L}}{{g\left( x \right)M}}} \right| = \hfill \\ \hfill \\ = \left| {\frac{{f\left( x \right)M - LM + LM - g\left( x \right)L}}{{g\left( x \right)M}}} \right| = \hfill \\ \hfill \\ = \frac{{M\left( {f\left( x \right) - L} \right) + L\left( {M - g\left( x \right)} \right)}}{{g\left( x \right)M}} \leqslant \hfill \\ \hfill \\ \leqslant \frac{{\left| M \right|\left| {f\left( x \right) - L} \right| + \left| L \right|\left| {M - g\left( x \right)} \right|}}{{\left| {g\left( x \right)} \right|\left| M \right|}} \leqslant \hfill \\ \hfill \\ \leqslant \frac{{\left| M \right|\left| {f\left( x \right) - L} \right| + \left| L \right|\left| {M - g\left( x \right)} \right|}}{{\left| {M - 1} \right|\left| M \right|}} \leqslant \hfill \\ \hfill \\ \leqslant K\left( {\left| {f\left( x \right) - L} \right| + \left| {M - g\left( x \right)} \right|} \right) \leqslant \hfill \\ \hfill \\ \leqslant K\left( {\frac{\varepsilon }{{2K}} + \frac{\varepsilon }{{2K}}} \right) = \varepsilon \hfill \\ \end{gathered} \]
oops.. the right definition of K is: \[\Large K = \max \left( {\frac{{\left| M \right|}}{{\left| {M - 1} \right|\left| M \right|}},\frac{{\left| L \right|}}{{\left| {M - 1} \right|\left| M \right|}}} \right)\]
so we are done
ok, thanks . will study it please do not delete
please post number 2b solution steps here sir. thanks @Michele_Laino
please, attach that exercise, using the "Attach File" button
more precisely in the last proof, we can suppose, more simply: \[\Large K = \frac{1}{{\left| {M - 1} \right|}}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question