***

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

oh.. nevermind, ive got it!
could you pls share the solution
ok, let me type it up

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

.
take ur time :)
But I'm not sure if thats the only solution... can someone help me check pls?
That looks good! Just for the sake of an alternative : \[\begin{align*} x &\equiv r \pmod{6}, \\ x &\equiv 9 \pmod{20}, \\ x &\equiv 4 \pmod{45} \end{align*}\] From first and second congruence, notice that \(\gcd(6,20)=2\), so it must be the case that \[r\equiv 9\equiv 1\pmod{2}\tag{a}\]. From first and last congruences, notice that \(\gcd(6,45)=3\), so it must be the case that \[r\equiv 4\equiv 1\pmod{3}\tag{b}\] From \((a),~(b)\) it follows \(r\equiv 1\pmod{2\cdot 3}\)
so it is the only solution right?
Yep! there are no other solutions
ok thank!
np:)

Not the answer you are looking for?

Search for more explanations.

Ask your own question