anonymous
  • anonymous
Need help. Will medal and fan
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\frac{ 1 }{ 2 }+\frac{ 1 }{ 3 }+...+\frac{ 1 }{ x }>1 \frac{ 1 }{ 2 }\]
anonymous
  • anonymous
What is the smallest posible value of x
anonymous
  • anonymous
X=1

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

SolomonZelman
  • SolomonZelman
\[\large \sum_{n=2}^{x}\frac{ 1 }{ n }>1+\frac{ 1 }{ 2 }\] this is the problem (i am kinda slow right now esp. with foreign keyboard)
SolomonZelman
  • SolomonZelman
\(\displaystyle\large \sum_{n=2}^{x}\frac{ 1 }{ n }>1+\frac{ 1 }{ 2 }\) \(\displaystyle\large \sum_{n=3}^{x}\frac{ 1 }{ n }>1\)
SolomonZelman
  • SolomonZelman
i am thinking about it sorry...:)
SolomonZelman
  • SolomonZelman
do partial sums suffice or want some legit math? because so far i only see partial sums
anonymous
  • anonymous
Do whatever you can
SolomonZelman
  • SolomonZelman
1/3+1/4=7/12 7/12 + 1/5 = (35+12)/60 = 47/60 47/60 + 1/6 = (47 + 10)/60 = 57/60 57/60 + 1/7 = (399 + 60)/420 = 459/420
SolomonZelman
  • SolomonZelman
\(\displaystyle\large \sum_{n=3}^{x}\frac{ 1 }{ n }>1\) \(\displaystyle\large x=7\) based on partial sums
anonymous
  • anonymous
yay!

Looking for something else?

Not the answer you are looking for? Search for more explanations.