How can I integrate this

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

How can I integrate this

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

X^2+2xy-y^2/(x+y)^2
(X^2+2xy-y^2/(x+y)^2)dx
please take a screenshot of complete problem and post

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[\frac{ (x ^{2}+2xy-y ^{2}) }{ (x+y)^2 } dx\]
integrate pls
is this part of an iterated integral (double integral) ?
Im just answering an exact differential equation and the last part to find my equation is to integrate that.
y are consider as constant
y are consider as a constant
I would probably write it like this: \[\int\limits_{}^{}(1-\frac{2y^2}{(x+y)^2}) dx\] then evaluate
notice: \[\frac{x^2+2xy-y^2}{(x+y)^2}=\frac{x^2+2xy+y^2 -2y^2}{(x+y)^2}=\frac{(x+y)^2-2y^2}{(x+y)^2}\]
I already got that I use long division
u=x+y then du=dx
\[\int\limits_{}^{}1 dx-2y^2 \int\limits \frac{1}{(x+y)^2} dx\]
Hey @EinsteinMorse if you're solving an exact differential equation, you cannot integrate it like this x and y are dependent
yeeaah thanks . I wanted to confirm my answwer
`y are consider as constant` how do you know ?
I already got the same idea like what've frekles told . I just want confirmation on that.
y is constant because it is dx
may i know the starting differential equaiton ?
I'm asking because I feel that you're doing it wrong.. your goal in solving a differential equation is to find the curve \(y\), it is not constant, it is a function of x.

Not the answer you are looking for?

Search for more explanations.

Ask your own question