JayDelV
  • JayDelV
If sin θ = 3 over 7 and tan θ < 0, what is the value of cos θ?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Nnesha
  • Nnesha
|dw:1439502598438:dw| at which quadrant sin is positive
JayDelV
  • JayDelV
First
Nnesha
  • Nnesha
remember that CAST rule for signs

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Nnesha
  • Nnesha
yes first and ?
JayDelV
  • JayDelV
Oh and second
Nnesha
  • Nnesha
yes right sin positive in 1st and 2nd quadrant given is tan < 0 is is less than 0 so at which quadrant you should draw a right triangle ?
JayDelV
  • JayDelV
second?
Nnesha
  • Nnesha
yes right tan is negative in 2nd quadrant <0 |dw:1439502785727:dw| draw a right triangle \[\rm sin \rm \theta = \frac{ opposite }{ hypotenuse }~~~~ \cos \theta = \frac{ adjacent }{ hypotenuse } ~~\tan \theta = \frac{ opposite }{ adjacent }\]
Nnesha
  • Nnesha
sin = opposite over hyp so \[\huge\rm \sin \theta = \frac{ 3 }{ 7 }=\frac{ opposite }{ hyp }\] opposite =3 hyp = 7 |dw:1439502881389:dw|
Nnesha
  • Nnesha
now apply the Pythagorean theorem to find 3rd side of right triangle
Nnesha
  • Nnesha
\[\huge\rm a^2+b^2=c^2\] c=hypotenuse

Looking for something else?

Not the answer you are looking for? Search for more explanations.