Guys I give medals help me find the y' of y=cos(x+y)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Guys I give medals help me find the y' of y=cos(x+y)

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

chain rule again for this one, in the guess of "implicit diff"
think of it as \[f(x)=\cos(x+f(x))\]
then via the chain rule you get \[f'(x)=-\sin(x+f(x))\times \left(1+f'(x)\right)\] solve this equation for \(f'(x)\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

of course it is easier to write \[y'=-\sin(x+y)(1+y')\] and solve for \(y'\)
yeah, can I divide the y'+1 from one side to the other?
ok I got it
i will leave the algebra to you , but no, that is not how you solve you need to distribute first
I got |dw:1439515086039:dw|
i just remembered my algebra stuff.. thank you again
looks good to me
yeah just because you are taking calc doesn't mean the algebra has changed any if my experience algebra is the biggest pitfall, not the ideas of calculus

Not the answer you are looking for?

Search for more explanations.

Ask your own question