nuccioreggie
  • nuccioreggie
help
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
nuccioreggie
  • nuccioreggie
Jack uses a probability simulator to roll a six-sided number cube 100 times and to flip a coin 100 times. The results of the experiment are shown below: Number on the Cube Number of Times Rolled 1 16 2 14 3 5 4 17 5 21 6 27 Heads Tails 41 59 Using Jack's simulation, what is the probability of rolling a 6 on the number cube and the coin landing on heads? fraction 1,107 over 10,000 fraction 1,593 over 10,000 fraction 27 over 100 fraction 41 over 100
nuccioreggie
  • nuccioreggie
@Michele_Laino
Michele_Laino
  • Michele_Laino
here we have two independent events, namely the flipping of a coin and the rolling of a six-sided cube. The probability to get a six, is: p1=favorable outcomes / possible outcomes= =27/(16+14+5+17+21+27)=...? the probability to get a head is: p2=favorable outcomes/ possible outcomes= 41/(41+59)=...?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

nuccioreggie
  • nuccioreggie
60
Michele_Laino
  • Michele_Laino
what is 60?
Michele_Laino
  • Michele_Laino
please you have to compute p1 and p2
nuccioreggie
  • nuccioreggie
95.6875
Michele_Laino
  • Michele_Laino
\[\Large \begin{gathered} {p_1} = \frac{{27}}{{16 + 14 + 5 + 17 + 21 + 27}} = ...? \hfill \\ \hfill \\ {p_2} = \frac{{41}}{{41 + 59}} = ...? \hfill \\ \end{gathered} \]
nuccioreggie
  • nuccioreggie
so D
Michele_Laino
  • Michele_Laino
I'm sorry, option D is incorrect!
nuccioreggie
  • nuccioreggie
oh wait sorry its c
Michele_Laino
  • Michele_Laino
please check my computation: \[\Large \begin{gathered} {p_1} = \frac{{27}}{{16 + 14 + 5 + 17 + 21 + 27}} = \frac{{27}}{{100}} \hfill \\ \hfill \\ {p_2} = \frac{{41}}{{41 + 59}} = \frac{{41}}{{100}} \hfill \\ \end{gathered} \] am I right?
nuccioreggie
  • nuccioreggie
yes so its C
Michele_Laino
  • Michele_Laino
now, since those two ebents are independent events, then the requested probability is given by the subsequent product: \[\Large {p_1} \cdot {p_2} = \frac{{27}}{{100}} \cdot \frac{{41}}{{100}} = ...?\]
Michele_Laino
  • Michele_Laino
events*
nuccioreggie
  • nuccioreggie
A
Michele_Laino
  • Michele_Laino
that's right!

Looking for something else?

Not the answer you are looking for? Search for more explanations.