Prove that if \(x_i > 0\) for all \(i\) then \begin{align*} &(x_1^{19} + x_2^{19} + \cdots + x_n^{19})(x_1^{93} + x_2^{93} + \cdots + x_n^{93}) \\ &\geq (x_1^{20} + x_2^{20} + \cdots + x_n^{20})(x_1^{92} + x_2^{92} + \cdots + x_n^{92}). \end{align*} Also, find when equality holds.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Prove that if \(x_i > 0\) for all \(i\) then \begin{align*} &(x_1^{19} + x_2^{19} + \cdots + x_n^{19})(x_1^{93} + x_2^{93} + \cdots + x_n^{93}) \\ &\geq (x_1^{20} + x_2^{20} + \cdots + x_n^{20})(x_1^{92} + x_2^{92} + \cdots + x_n^{92}). \end{align*} Also, find when equality holds.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

.
Well two simple cases where equality hold: \(x_i=1\) for all i or n=1
@ganeshie8 can you please help me with my question when you can this is urgent!!

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

I think we may use this inequality http://www.artofproblemsolving.com/wiki/index.php/Muirhead's_Inequality notice that \((93,19,0,\ldots) \succ (92,20,0,\ldots) \)
thinking of what @Empty have said i'll add its equal whenever xi a constant for all i :D
wiki says that muirhead is actually a generalization of Jensen's inequality https://en.wikipedia.org/wiki/Jensen%27s_inequality
I was actually looking at the Caucy-Schwartz inequality but I don't know how to solve this problem yet I am trying to cook up some ideas though. https://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality
Thanks! I know the Cauchy-Schwarz inequality from class; however, we never covered the Jensen's inequality or Muirhead. But any help at all is much appreciated. Let me know how it goes. I'm still stuck.
WOLG \(x_1\leq x_2\leq x_3\leq.....\leq x_n\) LHS:= \[x_1^{19}\left[\begin{matrix}x_1^{93}\\x_2^{93}\\::::\\x_n^{93}\end{matrix}\right]+x_2^{19}\left[\begin{matrix}x_1^{93}\\x_2^{93}\\::::\\x_n^{93}\end{matrix}\right]+::::+x_n^{19}\left[\begin{matrix}x_1^{93}\\x_2^{93}\\::::\\x_n^{93}\end{matrix}\right]\] RHS:= \[x_1^{20}\left[\begin{matrix}x_1^{92}\\x_2^{92}\\::::\\x_n^{92}\end{matrix}\right]+x_2^{20}\left[\begin{matrix}x_1^{92}\\x_2^{92}\\::::\\x_n^{92}\end{matrix}\right]+::::+x_n^{20}\left[\begin{matrix}x_1^{92}\\x_2^{92}\\::::\\x_n^{92}\end{matrix}\right]\] The first entry of the first matrix of the LHS is \(x_1^{19}*x_1^{93}=x_1^{112}\geq x_1^{20}*x_1^{92}=x_1^{112}\) og the RHS The second entry: LHS \(x_1^{19}*x_2^{93}=x_1^{19}*x_2^{92}x_2\geq x_1^{19}*x_2^{92}x_1=x_1^{20}*x_2^{92}=\text{the second entry of the RHS}\) Same as other entries and other matrix. That shows \(LHS\geq RHS\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question