anonymous
  • anonymous
Help will medal and fan directness pls not a lot of time For the transformation T, what is T-1? T : (x, y) (x + 4, y + 3) T-1: (x, y) (x - 4, y - 3) (-4x, -3y) (x + 3, y + 2)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
If P(-2, 1) is rotated 90°, its image is (2, -1) (1, -2) (-1, -2)
LynFran
  • LynFran
using matrix 90 degree rotation is \[\left[\begin{matrix}0 & -1 \\ 1 & 0\end{matrix}\right]*\left(\begin{matrix}-2 \\ 1\end{matrix}\right)\]
anonymous
  • anonymous
so its c??

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

LynFran
  • LynFran
we get \[\left(\begin{matrix}0*-2+(-1)*1 \\ 1*(-2)+0*1\end{matrix}\right)\]
anonymous
  • anonymous
ok i think im confused
LynFran
  • LynFran
\[\left(\begin{matrix}0-1 \\ -2+0\end{matrix}\right)\]
anonymous
  • anonymous
so c? thats wat im thinking
LynFran
  • LynFran
i just multiply out using matrix multiplication and yes \[\left(\begin{matrix}-1 \\ -2\end{matrix}\right)\]
anonymous
  • anonymous
yay thanks.. wat about the first one? i got b but idk
LynFran
  • LynFran
is that a minus 1 or \[t _{1}\]
anonymous
  • anonymous
t1 i beleive
LynFran
  • LynFran
well we.... T;(x,y) (x+4, y+3) T(1); (x,y) (x+4-1, y+3-1)
anonymous
  • anonymous
okay
anonymous
  • anonymous
x+3) (y+2)
anonymous
  • anonymous
?
LynFran
  • LynFran
yep
anonymous
  • anonymous
ohhh thank you!!!
LynFran
  • LynFran
welcome

Looking for something else?

Not the answer you are looking for? Search for more explanations.