anonymous
  • anonymous
limit as x approaches zero of quantity negative six plus x divided by x to the fourth power. Would the limit be 0 or does not exist?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Zale101
  • Zale101
\[\lim_{x \rightarrow 0}~[-6+\frac{x}{x^4}]\] Like this?
anonymous
  • anonymous
No @Zale101
Zale101
  • Zale101
How's it like then?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[\frac{ -6+x }{ x^4 }\]
anonymous
  • anonymous
^ @Zale101
Zale101
  • Zale101
Oh i see \[\lim_{x \rightarrow 0} ~[\large \frac{-6+x}{x^4}]= \\lim_{x \rightarrow 0} ~[\large \frac{\frac{-6}{x^4}+\frac{x}{x^4}}{\frac{x^4}{x^4}}]= \lim_{x \rightarrow 0} ~[\large \frac{\frac{-6}{x^4}+\frac{1}{x^4}}{{1}}]=\]
Zale101
  • Zale101
Now, what happens if i sub in x=0?
anonymous
  • anonymous
It's 0/1 which is undefined? @Zale101
Zale101
  • Zale101
\[\lim_{x \rightarrow 0} ~[\large \frac{\frac{-6}{x^4}+\frac{1}{x^3}}{1}]=\large \frac{\frac{-6}{0}+\frac{1}{0}}{1}\] Therefore, it does not exist because something over a zero is indeterminate.
anonymous
  • anonymous
Ok thank you!
anonymous
  • anonymous
@Zale101 Could you help me with a couple more?
Zale101
  • Zale101
Sure.

Looking for something else?

Not the answer you are looking for? Search for more explanations.