anonymous
  • anonymous
The decomposition of baking soda (NaHCO3) is given in this reaction: 2NaHCO3 → Na2CO3 + H2O + CO2 If 8 moles of baking soda decompose, how many moles of Na2CO3 are produced? 1 2 4 8
Chemistry
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Abhisar
  • Abhisar
This can be solved in a similar fashion. First try out yourself. I'll assist you through the process.
aaronq
  • aaronq
General Scheme for stoichiometric calculations: \(\sf \large 1.\)First write and balance an equation for the process described. \(\sf \large 2.\)Next, use the stoichiometric coefficients to find moles produced. \(\sf \large 3.\) Set up a ratio using the species of interest, like so: e.g. for a general reaction: \(\sf \large \color{red}{a}A + \color{blue}{b}B \rightleftharpoons \color{green}{c}C\) where upper case are the species (A,B,C), and lower case (a,b,c) are the coefficients , \(\sf \dfrac{n_A}{\color{red}{a}}=\dfrac{n_B}{\color{blue}{b}}=\dfrac{n_C}{\color{green}{c}}\) From here you can isolate what you need. For example: if you have 2 moles of B, how many moles of C can you produce? solve algebraically: \(\sf\dfrac{2}{\color{blue}{b}}=\dfrac{n_C}{\color{green}{c}}\rightarrow n_C=\dfrac{2*\color{green}{c}}{\color{blue}{b}}\) \(\sf \large 4.\) Solve

Looking for something else?

Not the answer you are looking for? Search for more explanations.