Ammarah
  • Ammarah
Sketch the graph of the piecewise defined function by hand
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Ammarah
  • Ammarah
|dw:1439747524104:dw|
Ammarah
  • Ammarah
@ganeshie8 @mathstudent55
Michele_Laino
  • Michele_Laino
hint: |dw:1439747762727:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
here, you have to choose the right pieces from both graphs
Ammarah
  • Ammarah
oh like if its less than or greater
Ammarah
  • Ammarah
|dw:1439748014126:dw|
Michele_Laino
  • Michele_Laino
hint: |dw:1439748052974:dw|
Michele_Laino
  • Michele_Laino
what is the domain of that second function?
Ammarah
  • Ammarah
?
Michele_Laino
  • Michele_Laino
please wait a moment
Michele_Laino
  • Michele_Laino
for example I consider the subsequent function: f(x)= sqrt(4-x) Now the radical exists, if and only if the subsequent condition holds: \[4 - x \geqslant 0 \Rightarrow x \leqslant 4\] am I right?
Ammarah
  • Ammarah
yes
Michele_Laino
  • Michele_Laino
so that part of function is defined inside this interval of the real line: \[0 \leqslant x \leqslant 4\]
Michele_Laino
  • Michele_Laino
since, from your definition sqrt(4-x) is given for all x such that they are greater or equal to zero
Michele_Laino
  • Michele_Laino
now, please do the same with the other part of your function, namely f(x)=sqrt(4+x)
Michele_Laino
  • Michele_Laino
hint: from your definition we have x<0, furthermore, the radical exists if and only if \[4 + x \geqslant 0\] so, what do you get?
Michele_Laino
  • Michele_Laino
please note that in order to draw the graph of your function, we need to know its domain

Looking for something else?

Not the answer you are looking for? Search for more explanations.