anonymous
  • anonymous
lim(x->1) (sqrt(x)-1)/(x-1) I know the answer but not how to get to that answer.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1439752558976:dw|
anonymous
  • anonymous
please re post the question correctly
anonymous
  • anonymous
Exactly how do I do that?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
hint, we can write this: \[\Large \frac{{\sqrt x - 1}}{{x - 1}} = \frac{{\sqrt x - 1}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}\]
anonymous
  • anonymous
If I have to complexly program my text to be easily understandable, instead of simply being able to draw it for you, then I think I will take my leave.
anonymous
  • anonymous
just watch and learn. if you leave , you lose
Michele_Laino
  • Michele_Laino
if we simplify my expression above, we get this: \[\Large \frac{{\sqrt x - 1}}{{x - 1}} = \frac{{\sqrt x - 1}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}} = \frac{1}{{\sqrt x + 1}}\] and the rightmost side is a continuous function at x=1 @Xep
anonymous
  • anonymous
The main thing I don't understand is how to do that first step (which I assume is conjugation)
Michele_Laino
  • Michele_Laino
no, it is the application of this factorization: \[\Large {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
Michele_Laino
  • Michele_Laino
where a^2 = x, and b^2=1
anonymous
  • anonymous
Oh I see it now, thanks for helping it click for me :)
Michele_Laino
  • Michele_Laino
:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.