anonymous
  • anonymous
Simplify this expression: ((1/(3+x))-(1/3))/x
Mathematics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

anonymous
  • anonymous
Simplify this expression: ((1/(3+x))-(1/3))/x
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
\[\frac{\dfrac{1}{3+x}-\dfrac{1}{3}}{x}\] Rewrite the numerator so that the rational expressions have a common denominator: \[\frac{\dfrac{1}{3+x}\times\dfrac{3}{3}-\dfrac{1}{3}\times\dfrac{3+x}{3+x}}{x}=\frac{\dfrac{3}{3(3+x)}-\dfrac{3+x}{3(3+x)}}{x}\] Since the denominators are the same, you can combine the fractions: \[\frac{\dfrac{3}{3(3+x)}-\dfrac{3+x}{3(3+x)}}{x}=\frac{\dfrac{3-(3+x)}{3(3+x)}}{x}\] Also, \(\dfrac{\frac{1}{a}}{b}=\dfrac{1}{ab}\), so the above is equivalent to \[\frac{3-(3+x)}{3x(3+x)}\] and you can simplify from here.
anonymous
  • anonymous
Thank you! @SithsAndGiggles
anonymous
  • anonymous
@SithsAndGiggles How do you find the limit when x is approaching 0, (x^2+3)/x^4?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
First thing you could do is check to see if \(\dfrac{x^2+3}{x^4}\) is continuous when \(x=0\). If it is, then the limit is exactly the value of the function at that point. Unfortunately, if you assume it is continuous and do that, you end up with \(\dfrac{0^2+3}{0^4}=\dfrac{3}{0}\). Undefined. Not good. Let's see if there's a way around this. (And if there isn't, that's okay too; limits don't have to exist.) Divide through by the highest power of \(x\) in the denominator: \[\frac{x^2+3}{x^4}=\frac{\dfrac{x^2}{x^4}+\dfrac{3}{x^4}}{\dfrac{x^4}{x^4}}=\frac{\dfrac{1}{x^2}+\dfrac{3}{x^4}}{1}=\frac{1}{x^2}+\frac{3}{x^4}\] Now as \(x\to0\), again you get some terms of the form \(\dfrac{\#}{0}\). Consider an incremental approach. Pick some values of \(x\) near 0 and see what happens to the function. For example, if \(x=1\), then \[\frac{1^2+3}{1^4}=\frac{1+3}{1}=4\] Move your test value closer to 0. Suppose \(x=0.1\). Then \[\frac{0.1^2+3}{0.1^4}=\frac{0.01+3}{0.0001}=30100\] See how that value got big very fast? You'll see a consistent pattern as you get closer and closer to 0. With this approach, it'd be wise to also check what happens from the other side. Above, you approach 0 with positive values. The other side would mean you approach with negative values.

Looking for something else?

Not the answer you are looking for? Search for more explanations.