anonymous
  • anonymous
Im not sure how to integrate this one.. what's the trick? image and latex coming ...
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
anonymous
  • anonymous
\[E^{-r t} A'[t] - r E^{-r t} A[t] = -p[t] E^{-r t}\]
anonymous
  • anonymous
if it helps I know already that.. A'[t] = r A[t] - p[t]‚Äč p[t] = r A[t] - A'[t]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[\int\limits\limits_{0}^{\infty} -p(t) E^{-r t} dt = ???\]
thomas5267
  • thomas5267
\[ \begin{align*} &\phantom{=}\int_0^\infty e^{-rt}A'(t)-re^{-rt}A(t)\,dt\\ &=[e^{-rt}A(t)]_0^\infty\\ &=-A(0)\\ \end{align*} \] \[ \begin{align*} -A(0)&=\int_0^\infty -p(t)e^{-rt}\,dt\\ A(0)&=\int_0^\infty p(t)e^{-rt}\,dt \end{align*} \]
thomas5267
  • thomas5267
If \(\lim_{x\to \infty}A(t)=c\in \mathbb{R}\) then \([e^{-rt}A(t)]_0^\infty=-A(0)\). If \(\lim_{x\to \infty}A(t)=\pm\infty\) then we have some trouble.
anonymous
  • anonymous
Thank you.. thomas.. I was fishing for ages for a function that would give me the antiderivative to p(t) e^(-rt) so I could use the Fundamental Formula but I couldn't see the connection that A(t) e^(-rt) was the anti-derivative to r A(t) e^(-rt) - A'(t) e^(-rt) *head slap*! awesome. ...
thomas5267
  • thomas5267
The instructions above just differentiated \(e^{-rt}A(t)\). Of course the result of integrating what was differentiated is the thing being differentiated lol!

Looking for something else?

Not the answer you are looking for? Search for more explanations.